
www.manaraa.com

EÆ
ient Data Stru
tures for Ba
ktra
k Sear
h SAT SolversInês Lyn
e and Jo~ao Marques-SilvaDepartment of Information Systems and Computer S
ien
e,Te
hni
al University of Lisbon,IST/INESC/CEL, Lisbon, Portugalfines,jpmsg�sat.ines
.ptAbstra
tThe implementation of eÆ
ient PropositionalSatis�ability (SAT) solvers entails the utilizationof highly eÆ
ient data stru
tures, as illustratedby most of the re
ent state-of-the-art SAT solvers.However, it is in general hard to 
ompare exist-ing data stru
tures, sin
e di�erent solvers are often
hara
terized by fairly di�erent algorithmi
 orga-nizations and te
hniques, and by di�erent sear
hstrategies and heuristi
s. This paper aims the eval-uation of data stru
tures for ba
ktra
k sear
h SATsolvers, under a 
ommon unbiased SAT framework.In addition, advantages and drawba
ks of ea
h ex-isting data stru
ture are identi�ed. Finally, newdata stru
tures are proposed, that are 
ompetitivewith the most eÆ
ient data stru
tures 
urrentlyavailable, and that may be preferable for the nextgeneration SAT solvers.1 Introdu
tionIn re
ent years Propositional Satis�ability(SAT) has su

essfully found a large numberof signi�
ant appli
ations. SAT has also beenthe subje
t of intensive resear
h. New ba
k-tra
k sear
h algorithms have been proposed,that in
lude new sear
h strategies, new sear
hte
hniques and new implementations. Broadly,improvements in SAT solvers have been 
har-a
terized by a few signi�
ant paradigm shifts.First, GRASP [11℄ and rel-sat [2℄ very su
-
essfully proposed using 
lause re
ording andnon-
hronologi
al ba
ktra
king in SAT solvers.More re
ently, sear
h restart strategies havebeen shown to be extremely e�e
tive for solvingreal-world problem instan
es [1, 6℄. Finally, themost re
ent paradigm shift was observed �rst inSATO [14℄ and more re
ently and more drasti-
ally in Cha� [12℄, that proposed several signif-i
ant new ideas on how to eÆ
iently implementba
ktra
k sear
h SAT algorithms.This paper proposes to further investigate theparadigm shift personi�ed by SATO and Cha�.How e�e
tive are the data stru
tures proposedby these SAT solvers? Are these data stru
-tures the best option for existing SAT solvers?

Are these data stru
tures the most adequate forthe expe
ted next generation SAT solvers? Is itpossible to do better? This paper represents a�rst study to answer these questions.The paper is organized as follows. In the nextse
tion we brie
y review ba
ktra
k sear
h SATsolvers. Se
tion 3 analyzes existing SAT datastru
tures and proposes new data stru
tures.These di�erent data stru
tures are then evalu-ated in a 
ommon SAT framework, and some oftheir limitations are identi�ed and empiri
ally
hara
terized. The paper 
on
ludes in Se
tion 5.2 Ba
ktra
k Sear
h AlgorithmsOver the years a large number of algorithmshas been proposed for SAT, from the originalDavis-Putnam pro
edure [5℄, to re
ent ba
k-tra
k sear
h algorithms [2, 8, 11, 12, 14℄, to lo
alsear
h algorithms [13℄, among many others.SAT algorithms 
an be 
hara
terized as be-ing either 
omplete or in
omplete. Complete al-gorithms 
an establish unsatis�ability if givenenough CPU time; in
omplete algorithms 
an-not. In a sear
h 
ontext 
omplete algorithmsare often referred to as systemati
, whereasin
omplete algorithms are referred to as non-systemati
.Among the di�erent algorithms, we believeba
ktra
k sear
h to be the most robust ap-proa
h for solving hard, stru
tured, real-worldinstan
es of SAT. This belief has been amplysupported by extensive experimental eviden
eobtained in re
ent years [1, 11, 12℄.2.1 OrganizationThe vast majority of ba
ktra
k sear
h SATalgorithms build upon the original ba
ktra
ksear
h algorithm of Davis, Logemann and Love-land [4℄. Most ba
ktra
k sear
h SAT solversare 
on
eptually 
omposed of three main stages:the de
ision stage; the dedu
tion stage; and thediagnosis state. The de
ision stage ele
ts thevariable and value to assign at ea
h bran
h-ing step of the sear
h pro
ess. The dedu
tionstate identi�es ne
essary assignments as a re-308



www.manaraa.com

sult of ea
h sele
ted variable assignment. Fi-nally, the diagnosis stage implements the ba
k-tra
king step of the algorithm. Despite beingbased on the same underlying algorithm, re
entba
ktra
k sear
h SAT algorithms present signif-i
ant modi�
ations, that 
an be 
ategorized interms of new strategies, new sear
h te
hniquesand new implementation paradigms.2.2 StrategiesSear
h strategies are used to organize thesear
h pro
ess. The most well-known sear
hstrategy is the variable bran
hing heuristi
 usedfor sele
ting variables and the values to assignto them.Moreover, most of the other su

essful sear
hstrategies for SAT involve randomization. Thisresults in part from the in
reasing a

eptan
e,in re
ent years, of using randomization in SATalgorithms. For example, randomization is es-sential in many lo
al sear
h algorithms [13℄; in-deed, most lo
al sear
h algorithms repeatedlyrestart the (lo
al) sear
h by randomly generat-ing 
omplete assignments.Randomization has also been su

essfully in-
luded in variable sele
tion heuristi
s of ba
k-tra
k sear
h algorithms [2℄. Variable sele
-tion heuristi
s, by being greedy in nature, areunlikely but unavoidably bound to sele
t thewrong variable at the wrong time for the wronginstan
e. The utilization of randomization helpsredu
ing the probability of seeing this happen-ing.Although intimately related with randomiz-ing variable sele
tion heuristi
s, randomizationis also a key aspe
t of sear
h restart strate-gies [1, 6℄. Randomization ensures that di�erentsub-trees are sear
hed ea
h time the sear
h al-gorithm is restarted.Moreover, and more re
ently, new sear
hstrategies have been proposed, that involve ran-domizing the ba
ktra
k step [9℄.Current state-of-the-art SAT solvers alreadyin
orporate some of the above forms of random-ization [1, 9, 12℄. In these SAT solvers variablesele
tion heuristi
s are randomized and sear
hrestart strategies are utilized.2.3 Te
hniquesBesides the identi�
ation of ne
essary assign-ments using the unit-
lause rule, referred to asBoolean Constraint Propagation, re
ent state-of-the-art ba
ktra
k sear
h SAT solvers [2, 11,12, 14℄ in
orporate te
hniques for diagnosing
on
i
ting 
onditions, thus being able to ba
k-tra
k non-
hronologi
ally, and to re
ord 
lausesthat explain and prevent identi�ed 
on
i
ting
onditions. Clauses that are re
orded due to di-

agnosing 
on
i
ting 
onditions are referred toas 
on
i
t-indu
ed 
lauses (or simply 
on
i
t
lauses). Additional te
hniques used in ba
k-tra
k sear
h SAT algorithms in
lude identi�-
ation of unique impli
ation points [11℄ andrelevan
e-based learning [2℄. (We should ob-serve that a number of other te
hniques is oftenused as a prepro
essing step [7℄.)2.4 ImplementationsRe
ent state-of-the-art SAT solvers are also
hara
terized by using very eÆ
ient data stru
-tures, intended to redu
e the CPU time requiredper ea
h node in the sear
h tree. Examples ofeÆ
ient data stru
tures in
lude the head/taillists used in SATO [14℄ and the wat
hed literalsused in Cha� [12℄.3 Data Stru
tures for SATThe main purposes of this se
tion are twofold.First, to review existing SAT data stru
tures.Se
ond, to propose new data stru
tures, thatmay be preferable for the next generation SATsolvers. Our des
ription of SAT data stru
turesis organized in two main 
ategories: data stru
-tures based on adja
en
y lists, and lazy datastru
tures. Moreover, we also analyze optimiza-tions that 
an be applied to most data stru
-tures, by spe
ial handling of small 
lauses. Also,we dis
uss the e�e
t of lazy data stru
tures ina

urately predi
ting dynami
 
lause size (i.e.the number of unassigned literals in a 
lause).3.1 Adja
en
y ListsMost ba
ktra
k sear
h SAT algorithms rep-resent 
lauses as lists of literals, and asso
iatewith ea
h variable x a list of the 
lauses that
ontain a literal in x. The lists asso
iated withea
h variable 
an be viewed as 
ontaining the
lauses that are adja
ent to that variable. Ingeneral, we use the term adja
en
y lists to referto data stru
tures in whi
h ea
h variable x 
on-tains a 
omplete list of the 
lauses that 
ontaina literal in x.In the following sub-se
tions, di�erent alter-native implementations of adja
en
y lists aredes
ribed. In ea
h 
ase we are interested inbeing able to a

urately and eÆ
iently iden-tify when 
lauses be
ome satis�ed, unsatis�edor unit.3.2 Assigned Literal HidingOne approa
h to identify satis�ed, unsatis�edor unit 
lauses 
onsists of extra
ting from the
lause's list of literals all the referen
es to un-satis�ed and satis�ed literals. These referen
esare added to dedi
ated lists asso
iated with ea
h309



www.manaraa.com


lause. As a result, satis�ed 
lauses 
ontain oneor more literal referen
es in the list of satis�edliterals; unsatis�ed 
lauses 
ontain all literal ref-eren
es in the list of unsatis�ed literals; �nally,unit 
lauses 
ontain one unassigned literal andall the other literal referen
es in the list of un-satis�ed literals.As will be shown in Se
tion 4, this organiza-tion of the adja
en
y list data stru
ture is never
ompetitive with the other approa
hes.3.3 The Counter-Based Approa
hAn alternative approa
h to keep tra
k of un-satis�ed, satis�ed and unit 
lauses is to asso-
iate literal 
ounters with ea
h 
lause. Theseliteral 
ounters indi
ate how many literals areunsatis�ed, satis�ed and, indire
tly, how manyare still unassigned. A 
lause is unsatis�ed if theunsatis�ed literal 
ounter equals the number ofliterals; it is satis�ed if the 
ounter of satis�edliterals is greater than one; �nally, it is unit ifthe unsatis�ed literal 
ounter equals the num-ber of literals minus one, and there is still oneunassigned literal. When a 
lause is de
laredunit, the list of literals is traversed to identifywhi
h literal needs to be assigned. An exam-ple of a SAT solver that utilizes 
ounter-basedadja
en
y lists is GRASP [11℄.3.4 Counter-Based with Satis�ed Clause Hid-ingA key drawba
k of using adja
en
y lists isthat the lists of 
lauses asso
iated with ea
hvariable 
an be large, and will grow as new
lauses are re
orded during the sear
h pro
ess.Hen
e, ea
h time a variable is assigned, a poten-tially large list of 
lauses needs to be traversed.Di�erent approa
hes 
an be envisioned to over-
ome this drawba
k. For the 
ounter-based ap-proa
h of the previous se
tion, one solution is toremove from the list of 
lauses of ea
h variableall the 
lauses that are known to be satis�ed.Hen
e, ea
h time a 
lause ! be
omes satis�ed,! is hidden from the list of 
lauses of all thevariables with literals in !. The te
hnique ofhiding satis�ed 
lauses 
an be tra
ed ba
k tothe work of O. Coudert in S
herzo [3℄ for theBinate Covering Problem. The motivation forhiding 
lauses is to redu
e the amount of workrequired ea
h time a variable x is assigned, sin
ein this 
ase only the unresolved 
lauses asso
i-ated with x need to be analyzed.3.5 Satis�ed Clause and Assigned Literal Hid-ingOne �nal organization of adja
en
y lists is toutilize the same data stru
tures as the ones usedby S
herzo [3℄. In this 
ase, unsatis�ed liter-

als get removed from literal lists in 
lauses, andsatis�ed 
lauses get hidden from 
lause lists invariables.The utilization of 
lause and literal hidingte
hniques aims redu
ing the amount of workasso
iated with assigning ea
h variable. As willbe shown in Se
tion 4, 
lause and literal hidingte
hniques are not parti
ularly e�e
tive when
ompared with the simple 
ounter-based ap-proa
h des
ribed above. Moreover, lazy datastru
tures, des
ribed in the next se
tion, are byfar more e�e
tive.3.6 Lazy Data Stru
turesAs mentioned in the previous se
tion, adja-
en
y list-based data stru
tures share a 
ommonproblem: ea
h variable x keeps referen
es to apotentially large number of 
lauses, that oftenin
reases as the sear
h pro
eeds. Clearly, thisimpa
ts negatively the amount of work asso
i-ated with assigning x. Moreover, it is often the
ase that most of x's 
lause referen
es need notbe analyzed when x is assigned, sin
e they donot be
ome unit or unsatis�ed.In this se
tion we analyze lazy data stru
-tures, whi
h are 
hara
terized by ea
h variablekeeping a redu
ed set of 
lauses' referen
es, forea
h of whi
h the variable 
an be e�e
tivelyused for de
laring the 
lause as unit, as satis-�ed or as unsatis�ed. The operation of thesedata stru
tures is summarized in Figure 1.3.7 Sato's Head/Tail ListsThe �rst lazy data stru
ture proposed forSAT was the Head/Tail (H/T) data stru
ture,originally used in the SATO SAT solver [14℄.As the name implies, this data stru
ture asso-
iates two referen
es with ea
h 
lause, the head(H) and the tail (T) literal referen
es (see Fig-ure 1). Initially the head referen
e points to the�rst literal, and the tail referen
e points to thelast literal. Ea
h time a literal pointed to by ei-ther the head or tail referen
e is assigned, a newunassigned literal is sear
hed for. In 
ase anunassigned literal is identi�ed, it be
omes thenew head (or tail) referen
e, and a new refer-en
e is 
reated and asso
iated with the literal'svariable. In 
ase a satis�ed literal is identi�ed,the 
lause is de
lared satis�ed. In 
ase no unas-signed literal 
an be identi�ed, and the otherreferen
e is rea
hed, then the 
lause is de
laredunit, unsatis�ed or satis�ed, depending on thevalue of the literal pointed to by the other refer-en
e. When the sear
h pro
ess ba
ktra
ks, thereferen
es that have be
ome asso
iated with thehead and tail referen
es 
an be dis
arded, andthe previous head and tail referen
es be
omea
tivated (represented with a dashed arrow in310



www.manaraa.com

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

HT htLS

H

H

H

H

H

H

H

H

H

T

T

T

T

T T

T

T

T

THB

HB

HB

HB

HB

TB

TB

unsatisfiedunassigned satisfied

Unit Clause

Backtracking

WL

@1 @2

W

TB

TB

TB

H

@3 @2@1

@1 @2

@2@3

@2@3@1 @4

@4@1

@1 @2

@1 @3@2

@2 @3@4 @1

@4 @1 @3@2

@2@1

@1 @2

@1 @3 @2

@1 @4 @3 @2

@1 @4 @3 @2

@1 @2

@1 @2

@2 @3@1

@1@4 @3@2

@1@4 @3@2

@1 @2

WLS
HS W W TS

WHS W TS

W W

HS W W TS

TSHS

HS W W TS

W W

WW

W

W W

W

W

Figure 1: Operation of lazy data stru
turesFigure 1 for 
olumn HT). Observe that this re-quires in the worst-
ase asso
iating with ea
h
lause a number of literal referen
es in variablesthat equals the number of literals.3.8 Cha�'s Wat
hed LiteralsThe more re
ent Cha� SAT solver [12℄ pro-posed a new data stru
ture, the Wat
hed Lit-erals (WL), that solves some of the problemsposed by H/T lists. As with H/T lists, two ref-eren
es are asso
iated with ea
h 
lause. How-ever, and in 
ontrast with H/T lists, there is noorder relation between the two referen
es. Thela
k of order between the two referen
es has thekey advantage that no literal referen
es need tobe updated when ba
ktra
king takes pla
e. In
ontrast, unit or unsatis�ed 
lauses are identi-�ed only after traversing all the 
lauses' literals;a 
lear drawba
k. The identi�
ation of satis�ed
lauses is similar to H/T lists.With respe
t to Figure 1, the most signi�
antdi�eren
e between H/T lists and wat
hed liter-als o

urs when the sear
h pro
ess ba
ktra
ks,in whi
h 
ase the referen
es to the wat
hed liter-als are not modi�ed. Moreover, and in 
ontrastwith H/T lists, for ea
h 
lause the number ofliteral referen
es that are asso
iated with vari-ables is kept 
onstant.3.9 Head/Tail Lists with Literal SiftingThe problems identi�ed for H/T lists andWat
hed Literals 
an be solved with yet an-other data stru
ture, H/T lists with literal sift-ing (htLS). This new data stru
ture is similarto H/T lists, but it dynami
ally rearranges thelist of literals, ordering the 
lause's assigned

literals by in
reasing de
ision level. Assignedvariables are sorted by non-de
reasing de
isionlevel, starting from the �rst or last literal ref-eren
e, and terminating at the most re
entlyassigned literal referen
es, just before the headreferen
e and just after the tail referen
e. Thissorting is a
hieved by sifting assigned literals asea
h is visited by the H and T literal referen
es.The sifting is performed towards one of the endsof the literal list. The solution based on literalsifting has several advantages:� When the 
lause either be
omes unit or un-satis�ed, there is no need to traverse all the
lause's literals to 
on�rm this fa
t. More-over, satis�ed 
lauses are identi�ed in thesame way as for the other lazy data stru
-tures.� As illustrated in Figure 1, only four literalreferen
es need to be asso
iated with ea
h
lause. This is in 
ontrast with H/T lists,that in the worst-
ase need a number ofreferen
es that equals the number of literals(even though wat
hed literals just requiretwo referen
es).� Literals that are assigned at low de
isionlevels are visited only on
e, and then siftedout of the literal range identi�ed by theH/T referen
es, until the sear
h ba
ktra
ksto those low de
ision levels. Hen
e, literalreferen
es never 
ross over assigned literals,neither when the sear
h is moving forwardnor when the sear
h is ba
ktra
king.3.10 Wat
hed Literals with Literal SiftingOne additional data stru
ture 
onsists ofutilizing wat
hed literals with literal sifting311



www.manaraa.com

(WLS). This data stru
ture applies literalsifting, but the referen
es to unassigned literalsare wat
hed, in the sense that when ba
ktra
k-ing takes pla
e the literal referen
es are notupdated (see Figure 1). This data stru
turekeeps two wat
hed literals, and uses two addi-tional referen
es for applying literal sifting andkeeping assigned literals by de
reasing order ofde
ision level. Wat
hed literals are managed asdes
ribed earlier, and literal sifting is appliedas proposed in the previous se
tion.The main advantage of the WLS datastru
ture is the simpli�ed ba
ktra
king pro
ess;the disadvantage is the requirement to visit allliterals between the literal referen
es HS andTS ea
h time the 
lause is either unit or unsat1.3.11 Handling Spe
ial Cases: B/TClausesAs one �nal optimization to literal sifting, wepropose the spe
ial handling of the 
lauses thatare more 
ommon in problem instan
es: binaryand ternary 
lauses. Both binary and ternary
lauses 
an be identi�ed as unit, sat or un-sat in 
onstant time, thus eliminating the needfor moving literal referen
es around. Sin
e thevast majority of the initial number of 
lausesfor most real-world problem instan
es are ei-ther binary or ternary, the average CPU time re-quired to handle ea
h 
lause may be noti
eablyredu
ed. In this situation, the H/T lists withliteral sifting are solely applied to large 
lausesand to 
lauses re
orded during the sear
h pro-
ess.As one �nal 
omment, observe that spe
ialhandling of binary/ternary 
lauses 
an also beused with all the other data stru
tures des
ribedin this se
tion.3.12 Do Lazy Data Stru
tures SuÆ
e?As mentioned earlier, most state-of-the-artSAT solvers 
urrently utilize lazy data stru
-tures. Even though these data stru
tures suÆ
efor ba
ktra
k sear
h SAT solvers that solely uti-lize Boolean Constraint Propagation, the lazi-ness of these data stru
tures may pose someproblems, in parti
ular for new algorithms thataim the integration of more advan
ed te
h-niques for the identi�
ation of ne
essary as-signments, namely restri
ted resolution, two-variable equivalen
e, and pattern-based 
lauseinferen
e, among other te
hniques [7℄. For these1Observe that it is easy to redu
e the number of lit-eral referen
es to three: two for the wat
hed literals andone for keeping the sifted literals. However, the overheadof literal sifting then be
omes more signi�
ant.

te
hniques, it is essential to know whi
h 
lausesare binary and/or ternary. As already men-tioned, lazy data stru
tures are not 
apable ofkeeping pre
ise information about the set ofbinary and/or ternary 
lauses2. Hen
e, if fu-ture SAT solvers 
hoose to integrate advan
edte
hniques for the identi�
ation of ne
essary as-signments, they either forgo using lazy datastru
tures, or they apply those te
hniques toa subset of the total number of binary/ternary
lauses. One reasonable assumption is thatlazy data stru
tures will indeed be deemed es-sential, and that future SAT solvers will ap-ply advan
ed te
hniques to a lazy set of bi-nary/ternary 
lauses. In this situation, it be-
omes important to 
hara
terize the laziness ofa lazy data stru
ture in terms of the a
tual num-ber of binary/ternary 
lauses it is 
apable ofidentifying. A data stru
ture that is able toidentify the largest number of binary/ternary
lauses is 
learly the best option for the imple-mentation of advan
ed sear
h te
hniques.4 Experimental ResultsThis se
tion evaluates the di�erent SAT datastru
tures des
ribed in the previous se
tion. Westart by introdu
ing the algorithmi
 frameworkused for the experimental evaluation, JQUEST.The next step is to analyze the results of usingdi�erent data stru
tures in SAT solvers. Finally,we also evaluate the a

ura
y of lazy SAT datastru
tures in estimating the number of satis�ed,binary and ternary 
lauses.4.1 The JQUEST SAT FrameworkIn order to experimentally evaluate the dif-ferent data stru
tures des
ribed in the previousse
tion, in a 
ontrolled experiment that ensuresthat only the di�eren
es in data stru
tures areevaluated, a dedi
ated SAT solving frameworkis needed. Besides di�ering data stru
tures and
oding styles, ea
h existing SAT solver imple-ments its own set of sear
h te
hniques, strate-gies and heuristi
s. Hen
e, a 
omparison be-tween state-of-the-art SAT solvers hardly guar-antees meaningful results with respe
t to theunderlying data stru
tures.As a result we developed the JQUEST SATframework, that 
an be instru
ted to guaranteethe same algorithmi
 organization and enfor
ethe same sear
h tree, for a given problem in-stan
e and for ea
h data stru
ture 
onsidered.Even though Java yields a ne
essarily slowerimplementation, it is also plain that it allows2Clearly, this 
an be done by asso
iating additionalliteral referen
es with ea
h 
lause, and as a result byintrodu
ing additional overhead.312



www.manaraa.com

Table 1: Results for the Time per De
ision (tpd, in mse
)Time ratio wrt min tpdInstan
e # de
s min tpd ALl AL
b AL
bsr ALlsr HT WL htLS htLS23 wLS wLS23
at 175-81 1001 3.33 1.99 1.10 2.06 1.88 1.11 1.02 1.09 1.00 1.22 1.01200-82 29308 2.13 7.28 3.17 1.78 1.60 1.68 1.23 1.06 1.00 1.26 1.13sw 100-13 1816 0.61 1.69 1.00 1.84 1.59 1.18 1.03 1.20 1.15 1.28 1.15100-79 1421 0.77 1.71 1.00 2.16 1.90 1.21 1.21 1.23 1.22 1.40 1.18ais 10 6380 3.91 8.39 3.39 1.47 1.27 1.88 1.39 1.00 1.02 1.21 1.13bm
 barrel5 5940 8.12 3.16 1.62 1.85 1.75 1.35 1.06 1.06 1.02 1.14 1.00longmult6 4807 11.53 6.80 3.03 1.60 1.51 1.36 1.13 1.09 1.00 1.23 1.08queueinvar18 8680 3.17 4.46 2.10 1.46 1.31 1.27 1.23 1.06 1.00 1.15 1.03
e
-is
as85 
5315 bug 28621 1.51 1.58 1.07 1.81 1.77 1.17 1.04 1.16 1.03 1.21 1.00dima
s hole9 6072 5.16 7.51 3.00 2.06 1.62 1.45 1.04 1.03 1.03 1.04 1.00ii32e5 1466 1.95 2.72 1.30 3.25 3.67 1.05 1.09 1.33 1.28 1.21 1.00par16-4-
 6167 5.30 7.90 3.44 1.33 1.21 1.80 1.22 1.08 1.00 1.20 1.03i
sst96 4blo
ksb 6803 15.37 6.34 2.51 2.13 1.73 1.24 1.29 1.00 1.17 1.14 1.16ibm bm
-ibm-3 2559 16.15 1.84 1.09 2.25 2.13 1.21 1.05 1.18 1.07 1.21 1.00planning fa
ts7hh.13 2241 6.70 2.71 1.36 3.02 2.71 1.42 1.46 1.14 1.03 1.36 1.00satplan-sat bw large.
 10020 37.97 5.24 2.39 2.55 2.38 1.41 1.25 1.10 1.00 1.26 1.01satplan-unsat bw large.
 3280 24.09 3.03 1.50 2.62 2.46 1.39 1.31 1.13 1.02 1.30 1.00sss-1.0 dlx2 aa 10292 1.02 5.04 2.22 1.97 1.66 1.55 1.00 1.04 1.02 1.09 1.01dlx2 

 bug07 10314 2.54 4.57 2.00 1.98 1.72 1.25 1.03 1.15 1.00 1.17 1.05sss-1.0a dlx2 

 bug17 7681 2.74 2.55 1.31 1.93 1.73 1.30 1.13 1.09 1.03 1.13 1.00dlx2 

 bug59 2588 1.87 2.27 1.20 2.03 1.89 1.22 1.13 1.12 1.07 1.18 1.00sss-sat-1.0 dlx2 

 ...bug004 18481 1.23 2.51 1.30 2.00 1.77 1.27 1.14 1.09 1.03 1.13 1.00dlx2 

 ...bug006 29173 1.91 3.33 1.61 2.05 1.77 1.36 1.13 1.09 1.02 1.12 1.00u
s
 bf0432-079 1038 2.23 1.67 1.04 2.01 1.86 1.16 1.00 1.13 1.05 1.18 1.03ssa2670-141 674 1.31 1.28 1.00 1.70 1.57 1.22 1.06 1.22 1.17 1.27 1.12fast prototyping of new algorithms. Moreover,well-devised Java implementations 
an be usedas the blueprint for faster C/C++ implemen-tations. In the 
ase of JQUEST, all the provenstrategies and te
hniques for SAT have been im-plemented: 
lause re
ording; non-
hronologi
alba
ktra
king; sear
h restarts; random ba
k-tra
king; and also variable sele
tion heuristi
s.For the results shown below a P-III�833 MHzLinux ma
hine with 1 GByte of physi
al mem-ory was used. The Java Virtual Ma
hine usedwas SUN's HotSpot JVM for JDK1.3.4.2 Lazy vs Non-Lazy Data Stru
turesIn order to 
ompare the di�erent data stru
-tures, the following algorithm organization ofJQUEST is used:� The VSIDS [12℄ (Variable State Indepen-dent De
aying Sum) heuristi
 is used forall data stru
tures. Our implementation ofthe VSIDS heuristi
 
losely follows the oneproposed in Cha�.� Identi�
ation of ne
essary assignmentssolely uses boolean 
onstraint propagation.We should note that, in order to guaranteethat the same sear
h tree is visited, the unit
lauses are handled in a �xed pre-de�nedorder.

� Con
i
t analysis is implemented as inGRASP. However, only a single 
lause isre
orded (by stopping at the �rst UniqueImpli
ation Point (UIP) [11℄ as suggestedby the authors of Cha� [12℄). Moreover, no
lauses are ever deleted.� Sear
h restarts and random ba
ktra
kingare not applied.The results of 
omparing the di�erent datastru
tures are shown in Table 1. In order to per-form this 
omparison, instan
es were sele
tedfrom several 
lasses of instan
es. In all 
ases,the problem instan
es 
hosen are solved withseveral thousand de
isions, usually taking a fewtens of se
onds. Hen
e, the instan
es 
hosenare signi�
antly hard, but 
an be solved with-out sophisti
ated sear
h strategies, that wouldnot ne
essarily guarantee the same sear
h treefor all data stru
tures 
onsidered.The table of results in
ludes the (
onstant)number of de
isions required to solve ea
hproblem instan
e, and the minimum time-per-de
ision over all data stru
tures. The resultsfor all the problem instan
es are shown as theratio with respe
t to the minimum time-per-de
ision for ea
h problem instan
e. For thedata stru
tures 
onsidered: ALl denotes adja-
en
y lists with assigned literal hiding; AL
bdenotes 
ounter-based adja
en
y lists; AL
bsr313



www.manaraa.com

denotes adja
en
y lists with satis�ed 
lauseremoval/hiding; ALlsr denotes adja
en
y listswith assigned literal and satis�ed 
lause re-moval/hiding; HT denotes H/T lists; WL de-notes wat
hed literals; htLS denotes H/T listswith literal sifting; �nally, htLS23 denotes H/Tlists with literal sifting and with spe
ial han-dling of binary and ternary 
lauses.From the table of results, several 
on
lusions
an be drawn. Clearly, lazy data stru
tures arein general signi�
antly more eÆ
ient that datastru
tures based on adja
en
y lists. Regardingthe data stru
tures based on adja
en
y lists, theutilization of satis�ed 
lause and assigned lit-eral hiding does not pay o�. For the lazy datastru
tures, H/T lists are in general signi�
antlyslower than either wat
hed literals or H/T listswith literal sifting. Finally, H/T lists with lit-eral sifting tend to be somewhat more eÆ
ientthan wat
hed literals. This results in part fromthe literal sifting te
hnique, that allows literalsassigned at low de
ision levels not to be repeat-edly analyzed during the sear
h pro
ess.Despite the previous results that indi
ateH/T lists with literal sifting to be in generalfaster than the wat
hed literals data stru
ture,one may expe
t the small performan
e di�er-en
e between the two data stru
tures to beeliminated by 
areful C/C++ implementations.This is justi�ed by the expe
ted better 
a
hebehavior of wat
hed literals [12℄.4.3 Limitations of Lazy Data Stru
turesAs mentioned in Se
tion 3.6, lazy datastru
tures do not maintain all the informa-tion that may be required for implementingadvan
ed SAT te
hniques, namely two-variableequivalen
e 
onditions (from pairs of binary
lauses), restri
ted resolution (between binaryand ternary 
lauses), and pattern-based 
lauseinferen
e 
onditions (also using binary andternary 
lauses) [7℄. Even though some ofthese te
hniques are often used as a prepro-
essing step by SAT solvers, their appli
ationduring the sear
h phase has been proposed inthe past [10℄. The obje
tive of this se
tion isthus to measure the laziness of lazy data stru
-tures during the sear
h pro
ess. The more lazya (lazy) data stru
ture is, the less suitable itis for implementing (lazy) advan
ed reasoningte
hniques during the sear
h pro
ess. As weshow below, no lazy data stru
ture provides
ompletely a

urate information regarding thenumber of binary, ternary or satis�ed 
lauses.However, some lazy data stru
tures are signif-i
antly more a

urate than others. Hen
e, ifsome form of lazy implementation of advan
edSAT te
hniques is to be used during the sear
h

pro
ess, some lazy data stru
tures are signi�-
antly more adequate than others.We start by observing that the wat
hed liter-als data stru
ture is unable to dynami
ally iden-tify binary and ternary 
lauses, sin
e there is noorder relation between the two referen
es used.Identifying binary and ternary 
lauses would in-volve maintaining additional information thanwhat is required by the wat
hed literals datastru
ture3.Table 2 in
ludes results measuring the a
-
ura
y of ea
h lazy data stru
ture in identify-ing satis�ed, binary and ternary 
lauses amongre
orded 
lauses. The referen
e values 
onsid-ered are given by the values obtained with ad-ja
en
y lists data stru
tures, whi
h are the a
-tual exa
t values. (Observe that, as mentionedabove, the wat
hed literals data stru
ture 
anonly be used for identifying satis�ed 
lauses.)From the results shown, we 
an 
on
lude thatH/T lists with literal sifting provide by far themost a

urate estimates of the number of sat-is�ed, binary and ternary 
lauses. In addition,for satis�ed and binary 
lauses, the measureda

ura
y is often 
lose to the maximum possiblevalue, whereas for ternary 
lauses the a

ura
yvalues tend to be somewhat lower.5 Con
lusionsThis paper surveys existing data stru
turesfor ba
ktra
k sear
h SAT algorithms and pro-poses new data stru
tures. In addition, we in-trodu
e the JQUEST SAT framework, that al-lows the fast prototyping of SAT solvers, and
an be used for the unbiased evaluation of SATdata stru
tures and algorithms. The JQUESTSAT framework is also expe
ted to serve asthe blueprint for the implementation of eÆ
ientSAT algorithms in C/C++.Regarding the evaluation of SAT data stru
-tures, the experimental results, indi
ate thatsome of the new data stru
tures proposed maybe preferable for the next generation SATsolvers. This 
on
lusion results from these newdata stru
tures being in general faster, butmostly due to 
oping better with the lazinessof re
ent (lazy) data stru
tures.Related resear
h work involves evaluatinghow advan
ed SAT te
hniques perform withlazy stru
tures. Clearly, this will depend on thea

ura
y of ea
h data stru
ture to identify bi-nary/ternary 
lauses. As a result, data stru
-3Observe that the utilization of two referen
es onlyguarantees the identi�
ation of unit 
lauses. The la
k oforder among the two referen
es prevents the identi�
a-tion of binary and ternary 
lauses. In order to identifyall or some of the binary/ternary 
lauses, either the tworeferen
es respe
t some order relation, or more refer-en
es need to be used.314



www.manaraa.com

Table 2: Results for the a

ura
y of re
orded 
lause identi�
ationsatis�ed 
lauses binary 
lauses ternary 
lausesInstan
e AL HT WL wLS htLS AL wLS HT htLS AL wLS HT htLS
at 175-81 291874 73% 80% 62% 89% 9978 10% 19% 93% 11166 3% 37% 86%200-82 148284026 96% 98% 85% 99% 438356 20% 29% 85% 613244 9% 14% 75%sw 100-13 424018 95% 96% 91% 98% 7185 36% 13% 91% 8616 2% 0% 85%100-79 259450 95% 96% 94% 98% 3062 26% 10% 79% 4780 5% 2% 73%ais 10 18519748 98% 98% 83% 99% 43337 31% 20% 75% 74899 10% 9% 68%bm
 barrel5 9005238 90% 95% 73% 99% 251321 1% 78% 98% 168820 1% 50% 92%longmult6 9892419 88% 93% 70% 95% 109446 8% 75% 96% 45805 9% 8% 77%queueinvar18 11318602 96% 97% 90% 98% 3927 8% 51% 90% 11486 1% 8% 74%
e
-is
as85 
5315 bug 24701766 90% 92% 86% 96% 628304 3% 65% 96% 539811 1% 50% 90%dima
s hole9 14775953 84% 93% 53% 98% 22258 10% 17% 72% 62987 4% 1% 64%ii32e5 128713 99% 99% 99% 100% 1413 4% 14% 70% 1256 0% 4% 50%par16-4-
 18326757 97% 99% 66% 100% 9454 19% 38% 95% 12131 7% 37% 90%i
sst96 4blo
ksb 15442183 92% 93% 81% 96% 191817 12% 48% 89% 196534 7% 16% 72%ibm bm
-ibm-3 778745 82% 88% 73% 94% 136082 2% 89% 98% 31120 3% 18% 89%planning fa
ts7hh.13 493070 89% 94% 86% 96% 16055 8% 62% 90% 14160 3% 52% 84%satplan-sat bw large.
 32784773 89% 93% 65% 97% 275761 12% 36% 86% 284054 6% 24% 71%satplan-unsat bw large.
 2713365 87% 90% 70% 96% 48475 14% 34% 91% 46996 7% 23% 82%sss-1.0 dlx2 aa 14905254 83% 89% 52% 93% 105184 20% 10% 89% 116638 5% 15% 58%dlx2 

 bug07 16664430 66% 85% 78% 91% 157500 16% 14% 86% 131612 6% 6% 66%sss-1.0a dlx2 

 bug17 6359386 95% 96% 86% 98% 44562 13% 10% 87% 49437 8% 2% 75%dlx2 

 bug59 586538 94% 93% 90% 95% 6450 13% 3% 74% 13002 5% 1% 55%sss-sat-1.0 dlx2 

 ...bug004 8587704 90% 93% 86% 97% 147713 11% 10% 92% 137653 7% 15% 84%dlx2 

 ...bug006 35417574 88% 93% 72% 97% 318105 12% 13% 93% 271931 6% 12% 81%u
s
 bf0432-079 200114 89% 92% 79% 98% 7423 4% 23% 90% 6702 2% 26% 91%ssa2670-141 57588 93% 92% 87% 96% 1595 11% 13% 88% 1646 3% 4% 90%tures that are unable to gather the informationrequired by advan
ed SAT te
hniques may beinadequate for the next generation state-of-the-art SAT solvers.Referen
es[1℄ L. Baptista and J. P. Marques-Silva. Using ran-domization and learning to solve hard real-worldinstan
es of satis�ability. In Int. Conf. on Con-straint Programming, pages 489{494, September2000.[2℄ R. Bayardo Jr. and R. S
hrag. Using CSP look-ba
k te
hniques to solve real-world SAT instan
es.In Pro
. Nat. Conf. on Arti�
ial Intelligen
e, pages203{208, 1997.[3℄ O. Coudert. On Solving Covering Problems. InPro
. Design Automation Conf., pages 197{202,June 1996.[4℄ M. Davis, G. Logemann, and D. Loveland. A ma-
hine program for theorem-proving. Communi
a-tions of the Asso
iation for Computing Ma
hinery,5:394{397, July 1962.[5℄ M. Davis and H. Putnam. A 
omputing pro
edurefor quanti�
ation theory. Journal of the Asso
ia-tion for Computing Ma
hinery, 7:201{215, 1960.[6℄ C. P. Gomes, B. Selman, and H. Kautz. Boost-ing 
ombinatorial sear
h through randomization.In Pro
. Nat. Conf. on Arti�
ial Intelligen
e, July1998.

[7℄ J.F. Groote and J.P. Warners. The propositionalformula 
he
ker heerhugo. In I. Gent, H. vanMaaren, and T. Walsh, editors, SAT 2000, pages261{281. IOS Press, 2000.[8℄ C. M. Li and Anbulagan. Look-ahead versus look-ba
k for satis�ability problems. In Pro
. Int. Conf.on Prin
iples and Pra
ti
e of Constraint Program-ming, 1997.[9℄ I. Lyn
e, L. Baptista, and J. Marques-Silva.Sto
hasti
 systemati
 sear
h algorithms for satis-�ability. In LICS Workshop on Theory and Appli-
ations of Satis�ability Testing, June 2001.[10℄ J. P. Marques-Silva. Algebrai
 simpli�
ation te
h-niques for propositional satis�ability. In Int.Conf. on Constraint Programming, pages 537{542,September 2000.[11℄ J. P. Marques-Silva and K. A. Sakallah. GRASP:A new sear
h algorithm for satis�ability. In Pro
.Int. Conf. on Computer-Aided Design, pages 220{227, November 1996.[12℄ M. Moskewi
z, C. Madigan, Y. Zhao, L. Zhang,and S. Malik. Engineering an eÆ
ient SAT solver.In Pro
. Design Automation Conf., 2001.[13℄ B. Selman and H. Kautz. Domain-independent ex-tensions to GSAT: Solving large stru
tured satis-�ability problems. In Pro
. Int. Joint Conf. onArti�
ial Intelligen
e, pages 290{295, 1993.[14℄ H. Zhang. SATO: An eÆ
ient propositional prover.In Pro
. Int. Conf. on Automated Dedu
tion, pages272{275, July 1997.315


