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Abstract

The implementation of efficient Propositional
Satisfiability (SAT) solvers entails the utilization
of highly efficient data structures, as illustrated
by most of the recent state-of-the-art SAT solvers.
However, it is in general hard to compare exist-
ing data structures, since different solvers are often
characterized by fairly different algorithmic orga-
nizations and techniques, and by different search
strategies and heuristics. This paper aims the eval-
uation of data structures for backtrack search SAT
solvers, under a common unbiased SAT framework.
In addition, advantages and drawbacks of each ex-
isting data structure are identified. Finally, new
data structures are proposed, that are competitive
with the most efficient data structures currently
available, and that may be preferable for the next
generation SAT solvers.

1 Introduction

In recent years Propositional Satisfiability
(SAT) has successfully found a large number
of significant applications. SAT has also been
the subject of intensive research. New back-
track search algorithms have been proposed,
that include new search strategies, new search
techniques and new implementations. Broadly,
improvements in SAT solvers have been char-
acterized by a few significant paradigm shifts.
First, GRASP [11] and rel-sat [2] very suc-
cessfully proposed using clause recording and
non-chronological backtracking in SAT solvers.
More recently, search restart strategies have
been shown to be extremely effective for solving
real-world problem instances [1, 6]. Finally, the
most recent paradigm shift was observed first in
SATO [14] and more recently and more drasti-
cally in Chaff [12], that proposed several signif-
icant new ideas on how to efficiently implement
backtrack search SAT algorithms.

This paper proposes to further investigate the
paradigm shift personified by SATO and Chaff.
How effective are the data structures proposed
by these SAT solvers? Are these data struc-
tures the best option for existing SAT solvers?

Are these data structures the most adequate for
the expected next generation SAT solvers? Is it
possible to do better? This paper represents a
first study to answer these questions.

The paper is organized as follows. In the next
section we briefly review backtrack search SAT
solvers. Section 3 analyzes existing SAT data
structures and proposes new data structures.
These different data structures are then evalu-
ated in a common SAT framework, and some of
their limitations are identified and empirically
characterized. The paper concludes in Section 5.

2 Backtrack Search Algorithms

Over the years a large number of algorithms
has been proposed for SAT, from the original
Davis-Putnam procedure [5], to recent back-
track search algorithms [2, 8, 11, 12, 14], to local
search algorithms [13], among many others.

SAT algorithms can be characterized as be-
ing either complete or incomplete. Complete al-
gorithms can establish unsatisfiability if given
enough CPU time; incomplete algorithms can-
not. In a search context complete algorithms
are often referred to as systematic, whereas
incomplete algorithms are referred to as non-
systematic.

Among the different algorithms, we believe
backtrack search to be the most robust ap-
proach for solving hard, structured, real-world
instances of SAT. This belief has been amply
supported by extensive experimental evidence
obtained in recent years [1, 11, 12].

2.1

The vast majority of backtrack search SAT
algorithms build upon the original backtrack
search algorithm of Davis, Logemann and Love-
land [4]. Most backtrack search SAT solvers
are conceptually composed of three main stages:
the decision stage; the deduction stage; and the
diagnosis state. The decision stage elects the
variable and value to assign at each branch-
ing step of the search process. The deduction
state identifies necessary assignments as a re-
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sult of each selected variable assignment. Fi-
nally, the diagnosis stage implements the back-
tracking step of the algorithm. Despite being
based on the same underlying algorithm, recent
backtrack search SAT algorithms present signif-
icant modifications, that can be categorized in
terms of new strategies, new search techniques
and new implementation paradigms.

2.2 Strategies

Search strategies are used to organize the
search process. The most well-known search
strategy is the variable branching heuristic used
for selecting variables and the values to assign
to them.

Moreover, most of the other successful search
strategies for SAT involve randomization. This
results in part from the increasing acceptance,
in recent years, of using randomization in SAT
algorithms. For example, randomization is es-
sential in many local search algorithms [13]; in-
deed, most local search algorithms repeatedly
restart the (local) search by randomly generat-
ing complete assignments.

Randomization has also been successfully in-
cluded in variable selection heuristics of back-
track search algorithms [2]. Variable selec-
tion heuristics, by being greedy in nature, are
unlikely but unavoidably bound to select the
wrong variable at the wrong time for the wrong
instance. The utilization of randomization helps
reducing the probability of seeing this happen-
ing.
Although intimately related with randomiz-
ing variable selection heuristics, randomization
is also a key aspect of search restart strate-
gies [1, 6]. Randomization ensures that different
sub-trees are searched each time the search al-
gorithm is restarted.

Moreover, and more recently, new search
strategies have been proposed, that involve ran-
domizing the backtrack step [9].

Current state-of-the-art SAT solvers already
incorporate some of the above forms of random-
ization [1, 9, 12]. In these SAT solvers variable
selection heuristics are randomized and search
restart strategies are utilized.

2.3 Techniques

Besides the identification of necessary assign-
ments using the unit-clause rule, referred to as
Boolean Constraint Propagation, recent state-
of-the-art backtrack search SAT solvers [2, 11,
12, 14] incorporate techniques for diagnosing
conflicting conditions, thus being able to back-
track non-chronologically, and to record clauses
that explain and prevent identified conflicting
conditions. Clauses that are recorded due to di-

agnosing conflicting conditions are referred to
as conflict-induced clauses (or simply conflict
clauses). Additional techniques used in back-
track search SAT algorithms include identifi-
cation of unique implication points [11] and
relevance-based learning [2]. (We should ob-
serve that a number of other techniques is often
used as a preprocessing step [7].)

24

Recent state-of-the-art SAT solvers are also
characterized by using very efficient data struc-
tures, intended to reduce the CPU time required
per each node in the search tree. Examples of
efficient data structures include the head/tail
lists used in SATO [14] and the watched literals
used in Chaff [12].

Implementations

3 Data Structures for SAT

The main purposes of this section are twofold.
First, to review existing SAT data structures.
Second, to propose new data structures, that
may be preferable for the next generation SAT
solvers. Our description of SAT data structures
is organized in two main categories: data struc-
tures based on adjacency lists, and lazy data
structures. Moreover, we also analyze optimiza-
tions that can be applied to most data struc-
tures, by special handling of small clauses. Also,
we discuss the effect of lazy data structures in
accurately predicting dynamic clause size (i.e.
the number of unassigned literals in a clause).

3.1

Most backtrack search SAT algorithms rep-
resent clauses as lists of literals, and associate
with each variable x a list of the clauses that
contain a literal in x. The lists associated with
each variable can be viewed as containing the
clauses that are adjacent to that variable. In
general, we use the term adjacency lists to refer
to data structures in which each variable x con-
tains a complete list of the clauses that contain
a literal in x.

In the following sub-sections, different alter-
native implementations of adjacency lists are
described. In each case we are interested in
being able to accurately and efficiently iden-
tify when clauses become satisfied, unsatisfied
or unit.

Adjacency Lists

3.2 Assigned Literal Hiding

One approach to identify satisfied, unsatisfied
or unit clauses consists of extracting from the
clause’s list of literals all the references to un-
satisfied and satisfied literals. These references
are added to dedicated lists associated with each
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clause. As a result, satisfied clauses contain one
or more literal references in the list of satisfied
literals; unsatisfied clauses contain all literal ref-
erences in the list of unsatisfied literals; finally,
unit clauses contain one unassigned literal and
all the other literal references in the list of un-
satisfied literals.

As will be shown in Section 4, this organiza-
tion of the adjacency list data structure is never
competitive with the other approaches.

3.3 The Counter-Based Approach

An alternative approach to keep track of un-
satisfied, satisfied and unit clauses is to asso-
ciate literal counters with each clause. These
literal counters indicate how many literals are
unsatisfied, satisfied and, indirectly, how many
are still unassigned. A clause is unsatisfied if the
unsatisfied literal counter equals the number of
literals; it is satisfied if the counter of satisfied
literals is greater than one; finally, it is unit if
the unsatisfied literal counter equals the num-
ber of literals minus one, and there is still one
unassigned literal. When a clause is declared
unit, the list of literals is traversed to identify
which literal needs to be assigned. An exam-
ple of a SAT solver that utilizes counter-based
adjacency lists is GRASP [11].

3.4 Counter—Based with Satisfied Clause Hid-
ing

A key drawback of using adjacency lists is
that the lists of clauses associated with each
variable can be large, and will grow as new
clauses are recorded during the search process.
Hence, each time a variable is assigned, a poten-
tially large list of clauses needs to be traversed.
Different approaches can be envisioned to over-
come this drawback. For the counter-based ap-
proach of the previous section, one solution is to
remove from the list of clauses of each variable
all the clauses that are known to be satisfied.
Hence, each time a clause w becomes satisfied,
w is hidden from the list of clauses of all the
variables with literals in w. The technique of
hiding satisfied clauses can be traced back to
the work of O. Coudert in Scherzo [3] for the
Binate Covering Problem. The motivation for
hiding clauses is to reduce the amount of work
required each time a variable x is assigned, since
in this case only the unresolved clauses associ-
ated with z need to be analyzed.

3.5 Satisfied Clause and Assigned Literal Hid-
ing

One final organization of adjacency lists is to
utilize the same data structures as the ones used
by Scherzo [3]. In this case, unsatisfied liter-

als get removed from literal lists in clauses, and
satisfied clauses get hidden from clause lists in
variables.

The utilization of clause and literal hiding
techniques aims reducing the amount of work
associated with assigning each variable. As will
be shown in Section 4, clause and literal hiding
techniques are not particularly effective when
compared with the simple counter-based ap-
proach described above. Moreover, lazy data
structures, described in the next section, are by
far more effective.

3.6 Lazy Data Structures

As mentioned in the previous section, adja-
cency list-based data structures share a common
problem: each variable z keeps references to a
potentially large number of clauses, that often
increases as the search proceeds. Clearly, this
impacts negatively the amount of work associ-
ated with assigning x. Moreover, it is often the
case that most of x’s clause references need not
be analyzed when x is assigned, since they do
not become unit or unsatisfied.

In this section we analyze lazy data struc-
tures, which are characterized by each variable
keeping a reduced set of clauses’ references, for
each of which the variable can be effectively
used for declaring the clause as unit, as satis-
fied or as unsatisfied. The operation of these
data structures is summarized in Figure 1.

3.7 Sato’s Head/Tail Lists

The first lazy data structure proposed for
SAT was the Head/Tail (H/T) data structure,
originally used in the SATO SAT solver [14].
As the name implies, this data structure asso-
ciates two references with each clause, the head
(H) and the tail (T) literal references (see Fig-
ure 1). Initially the head reference points to the
first literal, and the tail reference points to the
last literal. Each time a literal pointed to by ei-
ther the head or tail reference is assigned, a new
unassigned literal is searched for. In case an
unassigned literal is identified, it becomes the
new head (or tail) reference, and a new refer-
ence is created and associated with the literal’s
variable. In case a satisfied literal is identified,
the clause is declared satisfied. In case no unas-
signed literal can be identified, and the other
reference is reached, then the clause is declared
unit, unsatisfied or satisfied, depending on the
value of the literal pointed to by the other refer-
ence. When the search process backtracks, the
references that have become associated with the
head and tail references can be discarded, and
the previous head and tail references become
activated (represented with a dashed arrow in
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Figure 1: Operation of lazy data structures
Figure 1 for column HT). Observe that this re- literals by increasing decision level. Assigned

quires in the worst-case associating with each
clause a number of literal references in variables
that equals the number of literals.

3.8 Chaff’s Watched Literals

The more recent Chaff SAT solver [12] pro-
posed a new data structure, the Watched Lit-
erals (WL), that solves some of the problems
posed by H/T lists. As with H/T lists, two ref-
erences are associated with each clause. How-
ever, and in contrast with H/T lists, there is no
order relation between the two references. The
lack of order between the two references has the
key advantage that no literal references need to
be updated when backtracking takes place. In
contrast, unit or unsatisfied clauses are identi-
fied only after traversing all the clauses’ literals;
a clear drawback. The identification of satisfied
clauses is similar to H/T lists.

With respect to Figure 1, the most significant
difference between H/T lists and watched liter-
als occurs when the search process backtracks,
in which case the references to the watched liter-
als are not modified. Moreover, and in contrast
with H/T lists, for each clause the number of
literal references that are associated with vari-
ables is kept constant.

3.9 Head/Tail Lists with Literal Sifting

The problems identified for H/T lists and
Watched Literals can be solved with yet an-
other data structure, H/T lists with literal sift-
ing (htLS). This new data structure is similar
to H/T lists, but it dynamically rearranges the
list of literals, ordering the clause’s assigned

variables are sorted by non-decreasing decision
level, starting from the first or last literal ref-
erence, and terminating at the most recently
assigned literal references, just before the head
reference and just after the tail reference. This
sorting is achieved by sifting assigned literals as
each is visited by the H and T literal references.
The sifting is performed towards one of the ends
of the literal list. The solution based on literal
sifting has several advantages:

e When the clause either becomes unit or un-
satisfied, there is no need to traverse all the
clause’s literals to confirm this fact. More-
over, satisfied clauses are identified in the
same way as for the other lazy data struc-
tures.

As illustrated in Figure 1, only four literal
references need to be associated with each
clause. This is in contrast with H/T lists,
that in the worst-case need a number of
references that equals the number of literals
(even though watched literals just require
two references).

Literals that are assigned at low decision
levels are visited only once, and then sifted
out of the literal range identified by the
H/T references, until the search backtracks
to those low decision levels. Hence, literal
references never cross over assigned literals,
neither when the search is moving forward
nor when the search is backtracking.

3.10 Watched Literals with Literal Sifting

One additional data structure consists of
utilizing watched literals with literal sifting
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(WLS). This data structure applies literal
sifting, but the references to unassigned literals
are watched, in the sense that when backtrack-
ing takes place the literal references are not
updated (see Figure 1). This data structure
keeps two watched literals, and uses two addi-
tional references for applying literal sifting and
keeping assigned literals by decreasing order of
decision level. Watched literals are managed as
described earlier, and literal sifting is applied
as proposed in the previous section.

The main advantage of the WLS data
structure is the simplified backtracking process;
the disadvantage is the requirement to visit all
literals between the literal references HS and
TS each time the clause is either unit or unsat'.

3.11 Handling Special Cases: B/T

Clauses

As one final optimization to literal sifting, we
propose the special handling of the clauses that
are more common in problem instances: binary
and ternary clauses. Both binary and ternary
clauses can be identified as unit, sat or un-
sat in constant time, thus eliminating the need
for moving literal references around. Since the
vast majority of the initial number of clauses
for most real-world problem instances are ei-
ther binary or ternary, the average CPU time re-
quired to handle each clause may be noticeably
reduced. In this situation, the H/T lists with
literal sifting are solely applied to large clauses
and to clauses recorded during the search pro-
cess.

As one final comment, observe that special
handling of binary/ternary clauses can also be
used with all the other data structures described
in this section.

3.12 Do Lazy Data Structures Suffice?

As mentioned earlier, most state-of-the-art
SAT solvers currently utilize lazy data struc-
tures. Even though these data structures suffice
for backtrack search SAT solvers that solely uti-
lize Boolean Constraint Propagation, the lazi-
ness of these data structures may pose some
problems, in particular for new algorithms that
aim the integration of more advanced tech-
niques for the identification of necessary as-
signments, namely restricted resolution, two-
variable equivalence, and pattern-based clause
inference, among other techniques [7]. For these

!Observe that it is easy to reduce the number of lit-
eral references to three: two for the watched literals and
one for keeping the sifted literals. However, the overhead
of literal sifting then becomes more significant.

techniques, it is essential to know which clauses
are binary and/or ternary. As already men-
tioned, lazy data structures are not capable of
keeping precise information about the set of
binary and/or ternary clauses’. Hence, if fu-
ture SAT solvers choose to integrate advanced
techniques for the identification of necessary as-
signments, they either forgo using lazy data
structures, or they apply those techniques to
a subset of the total number of binary/ternary
clauses. One reasonable assumption is that
lazy data structures will indeed be deemed es-
sential, and that future SAT solvers will ap-
ply advanced techniques to a lazy set of bi-
nary/ternary clauses. In this situation, it be-
comes important to characterize the laziness of
a lazy data structure in terms of the actual num-
ber of binary/ternary clauses it is capable of
identifying. A data structure that is able to
identify the largest number of binary/ternary
clauses is clearly the best option for the imple-
mentation of advanced search techniques.

4 Experimental Results

This section evaluates the different SAT data
structures described in the previous section. We
start by introducing the algorithmic framework
used for the experimental evaluation, JQUEST.
The next step is to analyze the results of using
different data structures in SAT solvers. Finally,
we also evaluate the accuracy of lazy SAT data
structures in estimating the number of satisfied,
binary and ternary clauses.

4.1 The JQUEST SAT Framework

In order to experimentally evaluate the dif-
ferent data structures described in the previous
section, in a controlled experiment that ensures
that only the differences in data structures are
evaluated, a dedicated SAT solving framework
is needed. Besides differing data structures and
coding styles, each existing SAT solver imple-
ments its own set of search techniques, strate-
gies and heuristics. Hence, a comparison be-
tween state-of-the-art SAT solvers hardly guar-
antees meaningful results with respect to the
underlying data structures.

As a result we developed the JQUEST SAT
framework, that can be instructed to guarantee
the same algorithmic organization and enforce
the same search tree, for a given problem in-
stance and for each data structure considered.

Even though Java yields a necessarily slower
implementation, it is also plain that it allows

2(Clearly, this can be done by associating additional
literal references with each clause, and as a result by
introducing additional overhead.
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Table 1: Results for the Time per Decision (tpd, in msec)

Time ratio wrt min tpd
Instance # decs[min tpd [ ALT ALcb ALcbsr ALIsr HT WL htLS htLS23 wLS wLS23
at 175-81 1001 3.33/1.99 1.10  2.06 1.88 1.11 1.02 1.09 . 1.22  1.01
200-82 29308 213|728 317  1.78 1.60 1.68 1.23 1.06 1.26  1.13
o 100-13 1816 0.61]1.69 . 1.84 159 1.18 1.03 1.20 1.15 1.28 1.15
100-79 1421 0.77| 1.71 216 1.90 1.21 1.21 1.23  1.22 1.40 1.18
ais 10 6380 3.91(8.39 3.39 1.47 127 1.88 1.39 - 1.02 1.21  1.13
barrel5 5940 8.12(3.16  1.62 1.85 1.75 1.35 1.06 1.06  1.02 1.14 -
bme longmult6 4807| 11.53|6.80 3.03 1.60 151 1.36 1.13  1.09 1.23  1.08
queueinvar18 8680 3.17|4.46  2.10 1.46  1.31 1.27  1.23  1.06 . 1.15  1.03
cec-iscas85 | c5315_bug 28621 1.51]1.58 1.07  1.81 1.77 1.17 1.04 1.16  1.03 1.21
hole9 6072 5.16|7.51 3.00  2.06 1.62 1.45 1.04 1.03  1.03 1.04
dimacs ii32e5 1466 1.95[2.72  1.30  3.25 3.67 1.05 1.09 1.33  1.28 1.21
parl6-4-c 6167 5.30|7.90 3.44  1.33 1.21 1.80 1.22 1.08 1.20  1.03
icsst96 4blocksb 6803| 15.37(6.34  2.51 213 1.73 1.24 1.29 1.17 1.14  1.16
ibm bmc-ibm-3 2559| 16.15|1.84 1.09 225 213 1.21 1.05 1.18  1.07 1.21
planning facts7hh.13 2241 6.70]2.71 136  3.02 271 1.42 1.46 1.14  1.03 1.36
satplan-sat | bw_large.c 10020 37.97|5.24 239 255 238 1.41 1.25 1.10 - 1.26  1.01
satplan-unsat | bw_large.c 3280 24.0913.03 1.50 2.62 246 1.39 1.31 1.13 1.02 1.30 -
10 dlx2_aa 10292 1.02]5.04 222 1.97 1.66 1.55 - 1.04  1.02 1.09 1.01
dix2_cc_bug07 10314 2.54|4.57  2.00 198 172 125 103 1.5 [0 117 1.05
e l0m dIx2_cc_bug17 7681 2.74]2.55  1.31 1.93  1.73 1.30 1.13 1.09  1.03 1.13
dix2_cc_bugb9 2588 1.87]227 120 203 1.89 1.22 1.13 1.12  1.07 1.18
esat10 dIx2_cc_...bug004 | 18481 123251 1.30 2.00 1.77 1.27 1.14 1.09  1.03 1.13
dlx2_cc_...bug006 | 29173 1.91]3.33  1.61 205 1.77 1.36 1.13 1.09  1.02 1.12
ese bf0432-079 1038 223|167 1.04 201 1.8 1.16 - .13 1.05 1.18  1.03
$522670-141 674 1.31]1.28 - 1.70 157 1.22  1.06 1.22  1.17 1.27  1.12

fast prototyping of new algorithms. Moreover,
well-devised Java implementations can be used
as the blueprint for faster C/C++ implemen-
tations. In the case of JQUEST, all the proven
strategies and techniques for SAT have been im-
plemented: clause recording; non-chronological
backtracking; search restarts; random back-
tracking; and also variable selection heuristics.

For the results shown below a P-111@833 MHz
Linux machine with 1 GByte of physical mem-
ory was used. The Java Virtual Machine used
was SUN’s HotSpot JVM for JDK1.3.

4.2 Lazy vs Non-Lazy Data Structures

In order to compare the different data struc-
tures, the following algorithm organization of

JQUEST is used:

e The VSIDS [12] (Variable State Indepen-
dent Decaying Sum) heuristic is used for
all data structures. Our implementation of
the VSIDS heuristic closely follows the one
proposed in Chaff.

e Identification of necessary assignments
solely uses boolean constraint propagation.
We should note that, in order to guarantee
that the same search tree is visited, the unit
clauses are handled in a fized pre-defined
order.

e Conflict analysis is implemented as in
GRASP. However, only a single clause is
recorded (by stopping at the first Unique
Implication Point (UIP) [11] as suggested
by the authors of Chaff [12]). Moreover, no
clauses are ever deleted.

e Search restarts and random backtracking
are not applied.

The results of comparing the different data
structures are shown in Table 1. In order to per-
form this comparison, instances were selected
from several classes of instances. In all cases,
the problem instances chosen are solved with
several thousand decisions, usually taking a few
tens of seconds. Hence, the instances chosen
are significantly hard, but can be solved with-
out sophisticated search strategies, that would
not, necessarily guarantee the same search tree
for all data structures considered.

The table of results includes the (constant)
number of decisions required to solve each
problem instance, and the minimum time-per-
decision over all data structures. The results
for all the problem instances are shown as the
ratio with respect to the minimum time-per-
decision for each problem instance. For the
data structures considered: ALl denotes adja-
cency lists with assigned literal hiding; ALcb
denotes counter-based adjacency lists; ALcbsr
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denotes adjacency lists with satisfied clause
removal /hiding; ALlsr denotes adjacency lists
with assigned literal and satisfied clause re-
moval /hiding; HT denotes H/T lists; WL de-
notes watched literals; htLS denotes H/T lists
with literal sifting; finally, htL.S23 denotes H/T
lists with literal sifting and with special han-
dling of binary and ternary clauses.

From the table of results, several conclusions
can be drawn. Clearly, lazy data structures are
in general significantly more efficient that data
structures based on adjacency lists. Regarding
the data structures based on adjacency lists, the
utilization of satisfied clause and assigned lit-
eral hiding does not pay off. For the lazy data
structures, H/T lists are in general significantly
slower than either watched literals or H/T lists
with literal sifting. Finally, H/T lists with lit-
eral sifting tend to be somewhat more efficient
than watched literals. This results in part from
the literal sifting technique, that allows literals
assigned at low decision levels not to be repeat-
edly analyzed during the search process.

Despite the previous results that indicate
H/T lists with literal sifting to be in general
faster than the watched literals data structure,
one may expect the small performance differ-
ence between the two data structures to be
eliminated by careful C/C++ implementations.
This is justified by the expected better cache
behavior of watched literals [12].

4.3 Limitations of Lazy Data Structures

As mentioned in Section 3.6, lazy data
structures do not maintain all the informa-
tion that may be required for implementing
advanced SAT techniques, namely two-variable
equivalence conditions (from pairs of binary
clauses), restricted resolution (between binary
and ternary clauses), and pattern-based clause
inference conditions (also using binary and
ternary clauses) [7]. Even though some of
these techniques are often used as a prepro-
cessing step by SAT solvers, their application
during the search phase has been proposed in
the past [10]. The objective of this section is
thus to measure the laziness of lazy data struc-
tures during the search process. The more lazy
a (lazy) data structure is, the less suitable it
is for implementing (lazy) advanced reasoning
techniques during the search process. As we
show below, no lazy data structure provides
completely accurate information regarding the
number of binary, ternary or satisfied clauses.
However, some lazy data structures are signif-
icantly more accurate than others. Hence, if
some form of lazy implementation of advanced
SAT techniques is to be used during the search

process, some lazy data structures are signifi-
cantly more adequate than others.

We start by observing that the watched liter-
als data structure is unable to dynamically iden-
tify binary and ternary clauses, since there is no
order relation between the two references used.
Identifying binary and ternary clauses would in-
volve maintaining additional information than
what is required by the watched literals data
structure?.

Table 2 includes results measuring the ac-
curacy of each lazy data structure in identify-
ing satisfied, binary and ternary clauses among
recorded clauses. The reference values consid-
ered are given by the values obtained with ad-
jacency lists data structures, which are the ac-
tual exact values. (Observe that, as mentioned
above, the watched literals data structure can
only be used for identifying satisfied clauses.)
From the results shown, we can conclude that
H/T lists with literal sifting provide by far the
most accurate estimates of the number of sat-
isfied, binary and ternary clauses. In addition,
for satisfied and binary clauses, the measured
accuracy is often close to the maximum possible
value, whereas for ternary clauses the accuracy
values tend to be somewhat lower.

5 Conclusions

This paper surveys existing data structures
for backtrack search SAT algorithms and pro-
poses new data structures. In addition, we in-
troduce the JQUEST SAT framework, that al-
lows the fast prototyping of SAT solvers, and
can be used for the unbiased evaluation of SAT
data structures and algorithms. The JQUEST
SAT framework is also expected to serve as
the blueprint for the implementation of efficient
SAT algorithms in C/C++.

Regarding the evaluation of SAT data struc-
tures, the experimental results, indicate that
some of the new data structures proposed may
be preferable for the next generation SAT
solvers. This conclusion results from these new
data structures being in general faster, but
mostly due to coping better with the laziness
of recent (lazy) data structures.

Related research work involves evaluating
how advanced SAT techniques perform with
lazy structures. Clearly, this will depend on the
accuracy of each data structure to identify bi-
nary/ternary clauses. As a result, data struc-

30bserve that the utilization of two references only
guarantees the identification of unit clauses. The lack of
order among the two references prevents the identifica-
tion of binary and ternary clauses. In order to identify
all or some of the binary/ternary clauses, either the two
references respect some order relation, or more refer-
ences need to be used.
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Table 2: Results for the accuracy of recorded clause identification

satisfied clauses binary clauses ternary clauses

Tnstance AL HT WL wLS  hiLS AL wLS HT hilS AL wLS HT hilS

fat 175-81 291874 73% 80% 62%  89% 9978 10% 19% 93% | 11166 3% 37% 86%
200-82 148284026 96% 98% 85%  99% |438356 20% 29% 85% |613244 9% 14% 75%

sw 100-13 424018 95% 96% 91%  98% 7185 36% 13% 91% 8616 2% 0% 85%
100-79 259450 95% 96% 94%  98% 3062 26% 10% 79% 4780 5% 2% 173%

ais 10 18519748 98% 98% 83%  99% | 43337 31% 20% 75% | 74899 10% 9% 68%
barrel5 9005238 90% 95% 73%  99% |251321 1% 78% 98% |168820 1% 50% 92%

bme longmult6 9892419 88% 93% 70%  95% |109446 8% 75% 96% | 45805 9% 8% 7%
queueinvarl8 11318602 96% 97% 90%  98% 3927 8% 51% 90% | 11486 1% 8% 74%

cec-iscas85 | c5315_bug 24701766 90% 92% 86%  96% |628304 3% 65% 96% |539811 1% 50% 90%
hole9 14775953 84% 93% 53%  98% | 22258 10% 17% 72% | 62987 4% 1% 64%

dimacs ii32eh 128713 99% 99% 99% 100% 1413 4% 14% 70% 1256 0% 4% 50%
parl16-4-c 18326757 97% 99% 66% 100% 9454 19% 38% 95% | 12131 7% 37% 90%

icsst96 4blocksb 15442183 92% 93% 81%  96% |191817 12% 48% 89% |196534 7% 16% 72%
ibm bmc-ibm-3 778745 82% 88% 73%  94% |136082 2% 89% 98% | 31120 3% 18% 89%
planning facts7hh.13 493070 89% 94% 86%  96% | 16055 8% 62% 90% | 14160 3% 52% 84%
satplan-sat | bw_large.c 32784773 89% 93% 65%  97% |275761 12% 36% 86% |284054 6% 24% 1%
satplan-unsat | bw_large.c 2713365 87% 90% T70%  96% | 48475 14% 34% 91% | 46996 7% 23% 82%
s 1.0 dix2_aa 14905254 83% 89% 52%  93% |105184 20% 10% 89% |116638 5% 15% 58%
dIx2_cc_bug07 16664430 66% 85% 78%  91% |157500 16% 14% 86% |131612 6% 6% 66%

s 1.0n dIx2_cc_bugl7 6359386 95% 96% 86%  98% | 44562 13% 10% 87% | 49437 8% 2% 75%
dIx2_cc_bugh9 586538 94% 93% 90%  95% 6450 13% 3% 74% | 13002 5% 1% 55%

s sat 1.0 dix2_cc_...bug004 | 8587704 90% 93% 86%  97% [147713 11% 10% 92% |137653 % 15% 84%
dlx2_cc_...bug006 | 35417574 88% 93% 72%  97% |[318105 12% 13% 93% |[271931 6% 12% 81%

Hese bf0432-079 200114 89% 92% 79%  98% 7423 4% 23% 90% 6702 2% 26% 91%
$5a2670-141 57588 93% 92% 8%  96% 1595 11% 13% 88% 1646 3% 4% 90%

tures that are unable to gather the information  [7] J.F. Groote and J.P. Warners. The propositional

required by advanced SAT techniques may be
inadequate for the next generation state-of-the-
art SAT solvers.
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