
www.manaraa.com

EÆient Data Strutures for Baktrak Searh SAT SolversInês Lyne and Jo~ao Marques-SilvaDepartment of Information Systems and Computer Siene,Tehnial University of Lisbon,IST/INESC/CEL, Lisbon, Portugalfines,jpmsg�sat.ines.ptAbstratThe implementation of eÆient PropositionalSatis�ability (SAT) solvers entails the utilizationof highly eÆient data strutures, as illustratedby most of the reent state-of-the-art SAT solvers.However, it is in general hard to ompare exist-ing data strutures, sine di�erent solvers are oftenharaterized by fairly di�erent algorithmi orga-nizations and tehniques, and by di�erent searhstrategies and heuristis. This paper aims the eval-uation of data strutures for baktrak searh SATsolvers, under a ommon unbiased SAT framework.In addition, advantages and drawbaks of eah ex-isting data struture are identi�ed. Finally, newdata strutures are proposed, that are ompetitivewith the most eÆient data strutures urrentlyavailable, and that may be preferable for the nextgeneration SAT solvers.1 IntrodutionIn reent years Propositional Satis�ability(SAT) has suessfully found a large numberof signi�ant appliations. SAT has also beenthe subjet of intensive researh. New bak-trak searh algorithms have been proposed,that inlude new searh strategies, new searhtehniques and new implementations. Broadly,improvements in SAT solvers have been har-aterized by a few signi�ant paradigm shifts.First, GRASP [11℄ and rel-sat [2℄ very su-essfully proposed using lause reording andnon-hronologial baktraking in SAT solvers.More reently, searh restart strategies havebeen shown to be extremely e�etive for solvingreal-world problem instanes [1, 6℄. Finally, themost reent paradigm shift was observed �rst inSATO [14℄ and more reently and more drasti-ally in Cha� [12℄, that proposed several signif-iant new ideas on how to eÆiently implementbaktrak searh SAT algorithms.This paper proposes to further investigate theparadigm shift personi�ed by SATO and Cha�.How e�etive are the data strutures proposedby these SAT solvers? Are these data stru-tures the best option for existing SAT solvers?

Are these data strutures the most adequate forthe expeted next generation SAT solvers? Is itpossible to do better? This paper represents a�rst study to answer these questions.The paper is organized as follows. In the nextsetion we briey review baktrak searh SATsolvers. Setion 3 analyzes existing SAT datastrutures and proposes new data strutures.These di�erent data strutures are then evalu-ated in a ommon SAT framework, and some oftheir limitations are identi�ed and empiriallyharaterized. The paper onludes in Setion 5.2 Baktrak Searh AlgorithmsOver the years a large number of algorithmshas been proposed for SAT, from the originalDavis-Putnam proedure [5℄, to reent bak-trak searh algorithms [2, 8, 11, 12, 14℄, to loalsearh algorithms [13℄, among many others.SAT algorithms an be haraterized as be-ing either omplete or inomplete. Complete al-gorithms an establish unsatis�ability if givenenough CPU time; inomplete algorithms an-not. In a searh ontext omplete algorithmsare often referred to as systemati, whereasinomplete algorithms are referred to as non-systemati.Among the di�erent algorithms, we believebaktrak searh to be the most robust ap-proah for solving hard, strutured, real-worldinstanes of SAT. This belief has been amplysupported by extensive experimental evideneobtained in reent years [1, 11, 12℄.2.1 OrganizationThe vast majority of baktrak searh SATalgorithms build upon the original baktraksearh algorithm of Davis, Logemann and Love-land [4℄. Most baktrak searh SAT solversare oneptually omposed of three main stages:the deision stage; the dedution stage; and thediagnosis state. The deision stage elets thevariable and value to assign at eah branh-ing step of the searh proess. The dedutionstate identi�es neessary assignments as a re-308

www.manaraa.com

sult of eah seleted variable assignment. Fi-nally, the diagnosis stage implements the bak-traking step of the algorithm. Despite beingbased on the same underlying algorithm, reentbaktrak searh SAT algorithms present signif-iant modi�ations, that an be ategorized interms of new strategies, new searh tehniquesand new implementation paradigms.2.2 StrategiesSearh strategies are used to organize thesearh proess. The most well-known searhstrategy is the variable branhing heuristi usedfor seleting variables and the values to assignto them.Moreover, most of the other suessful searhstrategies for SAT involve randomization. Thisresults in part from the inreasing aeptane,in reent years, of using randomization in SATalgorithms. For example, randomization is es-sential in many loal searh algorithms [13℄; in-deed, most loal searh algorithms repeatedlyrestart the (loal) searh by randomly generat-ing omplete assignments.Randomization has also been suessfully in-luded in variable seletion heuristis of bak-trak searh algorithms [2℄. Variable sele-tion heuristis, by being greedy in nature, areunlikely but unavoidably bound to selet thewrong variable at the wrong time for the wronginstane. The utilization of randomization helpsreduing the probability of seeing this happen-ing.Although intimately related with randomiz-ing variable seletion heuristis, randomizationis also a key aspet of searh restart strate-gies [1, 6℄. Randomization ensures that di�erentsub-trees are searhed eah time the searh al-gorithm is restarted.Moreover, and more reently, new searhstrategies have been proposed, that involve ran-domizing the baktrak step [9℄.Current state-of-the-art SAT solvers alreadyinorporate some of the above forms of random-ization [1, 9, 12℄. In these SAT solvers variableseletion heuristis are randomized and searhrestart strategies are utilized.2.3 TehniquesBesides the identi�ation of neessary assign-ments using the unit-lause rule, referred to asBoolean Constraint Propagation, reent state-of-the-art baktrak searh SAT solvers [2, 11,12, 14℄ inorporate tehniques for diagnosingoniting onditions, thus being able to bak-trak non-hronologially, and to reord lausesthat explain and prevent identi�ed onitingonditions. Clauses that are reorded due to di-

agnosing oniting onditions are referred toas onit-indued lauses (or simply onitlauses). Additional tehniques used in bak-trak searh SAT algorithms inlude identi�-ation of unique impliation points [11℄ andrelevane-based learning [2℄. (We should ob-serve that a number of other tehniques is oftenused as a preproessing step [7℄.)2.4 ImplementationsReent state-of-the-art SAT solvers are alsoharaterized by using very eÆient data stru-tures, intended to redue the CPU time requiredper eah node in the searh tree. Examples ofeÆient data strutures inlude the head/taillists used in SATO [14℄ and the wathed literalsused in Cha� [12℄.3 Data Strutures for SATThe main purposes of this setion are twofold.First, to review existing SAT data strutures.Seond, to propose new data strutures, thatmay be preferable for the next generation SATsolvers. Our desription of SAT data struturesis organized in two main ategories: data stru-tures based on adjaeny lists, and lazy datastrutures. Moreover, we also analyze optimiza-tions that an be applied to most data stru-tures, by speial handling of small lauses. Also,we disuss the e�et of lazy data strutures inaurately prediting dynami lause size (i.e.the number of unassigned literals in a lause).3.1 Adjaeny ListsMost baktrak searh SAT algorithms rep-resent lauses as lists of literals, and assoiatewith eah variable x a list of the lauses thatontain a literal in x. The lists assoiated witheah variable an be viewed as ontaining thelauses that are adjaent to that variable. Ingeneral, we use the term adjaeny lists to referto data strutures in whih eah variable x on-tains a omplete list of the lauses that ontaina literal in x.In the following sub-setions, di�erent alter-native implementations of adjaeny lists aredesribed. In eah ase we are interested inbeing able to aurately and eÆiently iden-tify when lauses beome satis�ed, unsatis�edor unit.3.2 Assigned Literal HidingOne approah to identify satis�ed, unsatis�edor unit lauses onsists of extrating from thelause's list of literals all the referenes to un-satis�ed and satis�ed literals. These referenesare added to dediated lists assoiated with eah309

www.manaraa.com

lause. As a result, satis�ed lauses ontain oneor more literal referenes in the list of satis�edliterals; unsatis�ed lauses ontain all literal ref-erenes in the list of unsatis�ed literals; �nally,unit lauses ontain one unassigned literal andall the other literal referenes in the list of un-satis�ed literals.As will be shown in Setion 4, this organiza-tion of the adjaeny list data struture is neverompetitive with the other approahes.3.3 The Counter-Based ApproahAn alternative approah to keep trak of un-satis�ed, satis�ed and unit lauses is to asso-iate literal ounters with eah lause. Theseliteral ounters indiate how many literals areunsatis�ed, satis�ed and, indiretly, how manyare still unassigned. A lause is unsatis�ed if theunsatis�ed literal ounter equals the number ofliterals; it is satis�ed if the ounter of satis�edliterals is greater than one; �nally, it is unit ifthe unsatis�ed literal ounter equals the num-ber of literals minus one, and there is still oneunassigned literal. When a lause is delaredunit, the list of literals is traversed to identifywhih literal needs to be assigned. An exam-ple of a SAT solver that utilizes ounter-basedadjaeny lists is GRASP [11℄.3.4 Counter-Based with Satis�ed Clause Hid-ingA key drawbak of using adjaeny lists isthat the lists of lauses assoiated with eahvariable an be large, and will grow as newlauses are reorded during the searh proess.Hene, eah time a variable is assigned, a poten-tially large list of lauses needs to be traversed.Di�erent approahes an be envisioned to over-ome this drawbak. For the ounter-based ap-proah of the previous setion, one solution is toremove from the list of lauses of eah variableall the lauses that are known to be satis�ed.Hene, eah time a lause ! beomes satis�ed,! is hidden from the list of lauses of all thevariables with literals in !. The tehnique ofhiding satis�ed lauses an be traed bak tothe work of O. Coudert in Sherzo [3℄ for theBinate Covering Problem. The motivation forhiding lauses is to redue the amount of workrequired eah time a variable x is assigned, sinein this ase only the unresolved lauses assoi-ated with x need to be analyzed.3.5 Satis�ed Clause and Assigned Literal Hid-ingOne �nal organization of adjaeny lists is toutilize the same data strutures as the ones usedby Sherzo [3℄. In this ase, unsatis�ed liter-

als get removed from literal lists in lauses, andsatis�ed lauses get hidden from lause lists invariables.The utilization of lause and literal hidingtehniques aims reduing the amount of workassoiated with assigning eah variable. As willbe shown in Setion 4, lause and literal hidingtehniques are not partiularly e�etive whenompared with the simple ounter-based ap-proah desribed above. Moreover, lazy datastrutures, desribed in the next setion, are byfar more e�etive.3.6 Lazy Data StruturesAs mentioned in the previous setion, adja-eny list-based data strutures share a ommonproblem: eah variable x keeps referenes to apotentially large number of lauses, that ofteninreases as the searh proeeds. Clearly, thisimpats negatively the amount of work assoi-ated with assigning x. Moreover, it is often thease that most of x's lause referenes need notbe analyzed when x is assigned, sine they donot beome unit or unsatis�ed.In this setion we analyze lazy data stru-tures, whih are haraterized by eah variablekeeping a redued set of lauses' referenes, foreah of whih the variable an be e�etivelyused for delaring the lause as unit, as satis-�ed or as unsatis�ed. The operation of thesedata strutures is summarized in Figure 1.3.7 Sato's Head/Tail ListsThe �rst lazy data struture proposed forSAT was the Head/Tail (H/T) data struture,originally used in the SATO SAT solver [14℄.As the name implies, this data struture asso-iates two referenes with eah lause, the head(H) and the tail (T) literal referenes (see Fig-ure 1). Initially the head referene points to the�rst literal, and the tail referene points to thelast literal. Eah time a literal pointed to by ei-ther the head or tail referene is assigned, a newunassigned literal is searhed for. In ase anunassigned literal is identi�ed, it beomes thenew head (or tail) referene, and a new refer-ene is reated and assoiated with the literal'svariable. In ase a satis�ed literal is identi�ed,the lause is delared satis�ed. In ase no unas-signed literal an be identi�ed, and the otherreferene is reahed, then the lause is delaredunit, unsatis�ed or satis�ed, depending on thevalue of the literal pointed to by the other refer-ene. When the searh proess baktraks, thereferenes that have beome assoiated with thehead and tail referenes an be disarded, andthe previous head and tail referenes beomeativated (represented with a dashed arrow in310

www.manaraa.com

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

HT htLS

H

H

H

H

H

H

H

H

H

T

T

T

T

T T

T

T

T

THB

HB

HB

HB

HB

TB

TB

unsatisfiedunassigned satisfied

Unit Clause

Backtracking

WL

@1 @2

W

TB

TB

TB

H

@3 @2@1

@1 @2

@2@3

@2@3@1 @4

@4@1

@1 @2

@1 @3@2

@2 @3@4 @1

@4 @1 @3@2

@2@1

@1 @2

@1 @3 @2

@1 @4 @3 @2

@1 @4 @3 @2

@1 @2

@1 @2

@2 @3@1

@1@4 @3@2

@1@4 @3@2

@1 @2

WLS
HS W W TS

WHS W TS

W W

HS W W TS

TSHS

HS W W TS

W W

WW

W

W W

W

W

Figure 1: Operation of lazy data struturesFigure 1 for olumn HT). Observe that this re-quires in the worst-ase assoiating with eahlause a number of literal referenes in variablesthat equals the number of literals.3.8 Cha�'s Wathed LiteralsThe more reent Cha� SAT solver [12℄ pro-posed a new data struture, the Wathed Lit-erals (WL), that solves some of the problemsposed by H/T lists. As with H/T lists, two ref-erenes are assoiated with eah lause. How-ever, and in ontrast with H/T lists, there is noorder relation between the two referenes. Thelak of order between the two referenes has thekey advantage that no literal referenes need tobe updated when baktraking takes plae. Inontrast, unit or unsatis�ed lauses are identi-�ed only after traversing all the lauses' literals;a lear drawbak. The identi�ation of satis�edlauses is similar to H/T lists.With respet to Figure 1, the most signi�antdi�erene between H/T lists and wathed liter-als ours when the searh proess baktraks,in whih ase the referenes to the wathed liter-als are not modi�ed. Moreover, and in ontrastwith H/T lists, for eah lause the number ofliteral referenes that are assoiated with vari-ables is kept onstant.3.9 Head/Tail Lists with Literal SiftingThe problems identi�ed for H/T lists andWathed Literals an be solved with yet an-other data struture, H/T lists with literal sift-ing (htLS). This new data struture is similarto H/T lists, but it dynamially rearranges thelist of literals, ordering the lause's assigned

literals by inreasing deision level. Assignedvariables are sorted by non-dereasing deisionlevel, starting from the �rst or last literal ref-erene, and terminating at the most reentlyassigned literal referenes, just before the headreferene and just after the tail referene. Thissorting is ahieved by sifting assigned literals aseah is visited by the H and T literal referenes.The sifting is performed towards one of the endsof the literal list. The solution based on literalsifting has several advantages:� When the lause either beomes unit or un-satis�ed, there is no need to traverse all thelause's literals to on�rm this fat. More-over, satis�ed lauses are identi�ed in thesame way as for the other lazy data stru-tures.� As illustrated in Figure 1, only four literalreferenes need to be assoiated with eahlause. This is in ontrast with H/T lists,that in the worst-ase need a number ofreferenes that equals the number of literals(even though wathed literals just requiretwo referenes).� Literals that are assigned at low deisionlevels are visited only one, and then siftedout of the literal range identi�ed by theH/T referenes, until the searh baktraksto those low deision levels. Hene, literalreferenes never ross over assigned literals,neither when the searh is moving forwardnor when the searh is baktraking.3.10 Wathed Literals with Literal SiftingOne additional data struture onsists ofutilizing wathed literals with literal sifting311

www.manaraa.com

(WLS). This data struture applies literalsifting, but the referenes to unassigned literalsare wathed, in the sense that when baktrak-ing takes plae the literal referenes are notupdated (see Figure 1). This data struturekeeps two wathed literals, and uses two addi-tional referenes for applying literal sifting andkeeping assigned literals by dereasing order ofdeision level. Wathed literals are managed asdesribed earlier, and literal sifting is appliedas proposed in the previous setion.The main advantage of the WLS datastruture is the simpli�ed baktraking proess;the disadvantage is the requirement to visit allliterals between the literal referenes HS andTS eah time the lause is either unit or unsat1.3.11 Handling Speial Cases: B/TClausesAs one �nal optimization to literal sifting, wepropose the speial handling of the lauses thatare more ommon in problem instanes: binaryand ternary lauses. Both binary and ternarylauses an be identi�ed as unit, sat or un-sat in onstant time, thus eliminating the needfor moving literal referenes around. Sine thevast majority of the initial number of lausesfor most real-world problem instanes are ei-ther binary or ternary, the average CPU time re-quired to handle eah lause may be notieablyredued. In this situation, the H/T lists withliteral sifting are solely applied to large lausesand to lauses reorded during the searh pro-ess.As one �nal omment, observe that speialhandling of binary/ternary lauses an also beused with all the other data strutures desribedin this setion.3.12 Do Lazy Data Strutures SuÆe?As mentioned earlier, most state-of-the-artSAT solvers urrently utilize lazy data stru-tures. Even though these data strutures suÆefor baktrak searh SAT solvers that solely uti-lize Boolean Constraint Propagation, the lazi-ness of these data strutures may pose someproblems, in partiular for new algorithms thataim the integration of more advaned teh-niques for the identi�ation of neessary as-signments, namely restrited resolution, two-variable equivalene, and pattern-based lauseinferene, among other tehniques [7℄. For these1Observe that it is easy to redue the number of lit-eral referenes to three: two for the wathed literals andone for keeping the sifted literals. However, the overheadof literal sifting then beomes more signi�ant.

tehniques, it is essential to know whih lausesare binary and/or ternary. As already men-tioned, lazy data strutures are not apable ofkeeping preise information about the set ofbinary and/or ternary lauses2. Hene, if fu-ture SAT solvers hoose to integrate advanedtehniques for the identi�ation of neessary as-signments, they either forgo using lazy datastrutures, or they apply those tehniques toa subset of the total number of binary/ternarylauses. One reasonable assumption is thatlazy data strutures will indeed be deemed es-sential, and that future SAT solvers will ap-ply advaned tehniques to a lazy set of bi-nary/ternary lauses. In this situation, it be-omes important to haraterize the laziness ofa lazy data struture in terms of the atual num-ber of binary/ternary lauses it is apable ofidentifying. A data struture that is able toidentify the largest number of binary/ternarylauses is learly the best option for the imple-mentation of advaned searh tehniques.4 Experimental ResultsThis setion evaluates the di�erent SAT datastrutures desribed in the previous setion. Westart by introduing the algorithmi frameworkused for the experimental evaluation, JQUEST.The next step is to analyze the results of usingdi�erent data strutures in SAT solvers. Finally,we also evaluate the auray of lazy SAT datastrutures in estimating the number of satis�ed,binary and ternary lauses.4.1 The JQUEST SAT FrameworkIn order to experimentally evaluate the dif-ferent data strutures desribed in the previoussetion, in a ontrolled experiment that ensuresthat only the di�erenes in data strutures areevaluated, a dediated SAT solving frameworkis needed. Besides di�ering data strutures andoding styles, eah existing SAT solver imple-ments its own set of searh tehniques, strate-gies and heuristis. Hene, a omparison be-tween state-of-the-art SAT solvers hardly guar-antees meaningful results with respet to theunderlying data strutures.As a result we developed the JQUEST SATframework, that an be instruted to guaranteethe same algorithmi organization and enforethe same searh tree, for a given problem in-stane and for eah data struture onsidered.Even though Java yields a neessarily slowerimplementation, it is also plain that it allows2Clearly, this an be done by assoiating additionalliteral referenes with eah lause, and as a result byintroduing additional overhead.312

www.manaraa.com

Table 1: Results for the Time per Deision (tpd, in mse)Time ratio wrt min tpdInstane # des min tpd ALl ALb ALbsr ALlsr HT WL htLS htLS23 wLS wLS23at 175-81 1001 3.33 1.99 1.10 2.06 1.88 1.11 1.02 1.09 1.00 1.22 1.01200-82 29308 2.13 7.28 3.17 1.78 1.60 1.68 1.23 1.06 1.00 1.26 1.13sw 100-13 1816 0.61 1.69 1.00 1.84 1.59 1.18 1.03 1.20 1.15 1.28 1.15100-79 1421 0.77 1.71 1.00 2.16 1.90 1.21 1.21 1.23 1.22 1.40 1.18ais 10 6380 3.91 8.39 3.39 1.47 1.27 1.88 1.39 1.00 1.02 1.21 1.13bm barrel5 5940 8.12 3.16 1.62 1.85 1.75 1.35 1.06 1.06 1.02 1.14 1.00longmult6 4807 11.53 6.80 3.03 1.60 1.51 1.36 1.13 1.09 1.00 1.23 1.08queueinvar18 8680 3.17 4.46 2.10 1.46 1.31 1.27 1.23 1.06 1.00 1.15 1.03e-isas85 5315 bug 28621 1.51 1.58 1.07 1.81 1.77 1.17 1.04 1.16 1.03 1.21 1.00dimas hole9 6072 5.16 7.51 3.00 2.06 1.62 1.45 1.04 1.03 1.03 1.04 1.00ii32e5 1466 1.95 2.72 1.30 3.25 3.67 1.05 1.09 1.33 1.28 1.21 1.00par16-4- 6167 5.30 7.90 3.44 1.33 1.21 1.80 1.22 1.08 1.00 1.20 1.03isst96 4bloksb 6803 15.37 6.34 2.51 2.13 1.73 1.24 1.29 1.00 1.17 1.14 1.16ibm bm-ibm-3 2559 16.15 1.84 1.09 2.25 2.13 1.21 1.05 1.18 1.07 1.21 1.00planning fats7hh.13 2241 6.70 2.71 1.36 3.02 2.71 1.42 1.46 1.14 1.03 1.36 1.00satplan-sat bw large. 10020 37.97 5.24 2.39 2.55 2.38 1.41 1.25 1.10 1.00 1.26 1.01satplan-unsat bw large. 3280 24.09 3.03 1.50 2.62 2.46 1.39 1.31 1.13 1.02 1.30 1.00sss-1.0 dlx2 aa 10292 1.02 5.04 2.22 1.97 1.66 1.55 1.00 1.04 1.02 1.09 1.01dlx2 bug07 10314 2.54 4.57 2.00 1.98 1.72 1.25 1.03 1.15 1.00 1.17 1.05sss-1.0a dlx2 bug17 7681 2.74 2.55 1.31 1.93 1.73 1.30 1.13 1.09 1.03 1.13 1.00dlx2 bug59 2588 1.87 2.27 1.20 2.03 1.89 1.22 1.13 1.12 1.07 1.18 1.00sss-sat-1.0 dlx2 ...bug004 18481 1.23 2.51 1.30 2.00 1.77 1.27 1.14 1.09 1.03 1.13 1.00dlx2 ...bug006 29173 1.91 3.33 1.61 2.05 1.77 1.36 1.13 1.09 1.02 1.12 1.00us bf0432-079 1038 2.23 1.67 1.04 2.01 1.86 1.16 1.00 1.13 1.05 1.18 1.03ssa2670-141 674 1.31 1.28 1.00 1.70 1.57 1.22 1.06 1.22 1.17 1.27 1.12fast prototyping of new algorithms. Moreover,well-devised Java implementations an be usedas the blueprint for faster C/C++ implemen-tations. In the ase of JQUEST, all the provenstrategies and tehniques for SAT have been im-plemented: lause reording; non-hronologialbaktraking; searh restarts; random bak-traking; and also variable seletion heuristis.For the results shown below a P-III�833 MHzLinux mahine with 1 GByte of physial mem-ory was used. The Java Virtual Mahine usedwas SUN's HotSpot JVM for JDK1.3.4.2 Lazy vs Non-Lazy Data StruturesIn order to ompare the di�erent data stru-tures, the following algorithm organization ofJQUEST is used:� The VSIDS [12℄ (Variable State Indepen-dent Deaying Sum) heuristi is used forall data strutures. Our implementation ofthe VSIDS heuristi losely follows the oneproposed in Cha�.� Identi�ation of neessary assignmentssolely uses boolean onstraint propagation.We should note that, in order to guaranteethat the same searh tree is visited, the unitlauses are handled in a �xed pre-de�nedorder.

� Conit analysis is implemented as inGRASP. However, only a single lause isreorded (by stopping at the �rst UniqueImpliation Point (UIP) [11℄ as suggestedby the authors of Cha� [12℄). Moreover, nolauses are ever deleted.� Searh restarts and random baktrakingare not applied.The results of omparing the di�erent datastrutures are shown in Table 1. In order to per-form this omparison, instanes were seletedfrom several lasses of instanes. In all ases,the problem instanes hosen are solved withseveral thousand deisions, usually taking a fewtens of seonds. Hene, the instanes hosenare signi�antly hard, but an be solved with-out sophistiated searh strategies, that wouldnot neessarily guarantee the same searh treefor all data strutures onsidered.The table of results inludes the (onstant)number of deisions required to solve eahproblem instane, and the minimum time-per-deision over all data strutures. The resultsfor all the problem instanes are shown as theratio with respet to the minimum time-per-deision for eah problem instane. For thedata strutures onsidered: ALl denotes adja-eny lists with assigned literal hiding; ALbdenotes ounter-based adjaeny lists; ALbsr313

www.manaraa.com

denotes adjaeny lists with satis�ed lauseremoval/hiding; ALlsr denotes adjaeny listswith assigned literal and satis�ed lause re-moval/hiding; HT denotes H/T lists; WL de-notes wathed literals; htLS denotes H/T listswith literal sifting; �nally, htLS23 denotes H/Tlists with literal sifting and with speial han-dling of binary and ternary lauses.From the table of results, several onlusionsan be drawn. Clearly, lazy data strutures arein general signi�antly more eÆient that datastrutures based on adjaeny lists. Regardingthe data strutures based on adjaeny lists, theutilization of satis�ed lause and assigned lit-eral hiding does not pay o�. For the lazy datastrutures, H/T lists are in general signi�antlyslower than either wathed literals or H/T listswith literal sifting. Finally, H/T lists with lit-eral sifting tend to be somewhat more eÆientthan wathed literals. This results in part fromthe literal sifting tehnique, that allows literalsassigned at low deision levels not to be repeat-edly analyzed during the searh proess.Despite the previous results that indiateH/T lists with literal sifting to be in generalfaster than the wathed literals data struture,one may expet the small performane di�er-ene between the two data strutures to beeliminated by areful C/C++ implementations.This is justi�ed by the expeted better ahebehavior of wathed literals [12℄.4.3 Limitations of Lazy Data StruturesAs mentioned in Setion 3.6, lazy datastrutures do not maintain all the informa-tion that may be required for implementingadvaned SAT tehniques, namely two-variableequivalene onditions (from pairs of binarylauses), restrited resolution (between binaryand ternary lauses), and pattern-based lauseinferene onditions (also using binary andternary lauses) [7℄. Even though some ofthese tehniques are often used as a prepro-essing step by SAT solvers, their appliationduring the searh phase has been proposed inthe past [10℄. The objetive of this setion isthus to measure the laziness of lazy data stru-tures during the searh proess. The more lazya (lazy) data struture is, the less suitable itis for implementing (lazy) advaned reasoningtehniques during the searh proess. As weshow below, no lazy data struture providesompletely aurate information regarding thenumber of binary, ternary or satis�ed lauses.However, some lazy data strutures are signif-iantly more aurate than others. Hene, ifsome form of lazy implementation of advanedSAT tehniques is to be used during the searh

proess, some lazy data strutures are signi�-antly more adequate than others.We start by observing that the wathed liter-als data struture is unable to dynamially iden-tify binary and ternary lauses, sine there is noorder relation between the two referenes used.Identifying binary and ternary lauses would in-volve maintaining additional information thanwhat is required by the wathed literals datastruture3.Table 2 inludes results measuring the a-uray of eah lazy data struture in identify-ing satis�ed, binary and ternary lauses amongreorded lauses. The referene values onsid-ered are given by the values obtained with ad-jaeny lists data strutures, whih are the a-tual exat values. (Observe that, as mentionedabove, the wathed literals data struture anonly be used for identifying satis�ed lauses.)From the results shown, we an onlude thatH/T lists with literal sifting provide by far themost aurate estimates of the number of sat-is�ed, binary and ternary lauses. In addition,for satis�ed and binary lauses, the measuredauray is often lose to the maximum possiblevalue, whereas for ternary lauses the aurayvalues tend to be somewhat lower.5 ConlusionsThis paper surveys existing data struturesfor baktrak searh SAT algorithms and pro-poses new data strutures. In addition, we in-trodue the JQUEST SAT framework, that al-lows the fast prototyping of SAT solvers, andan be used for the unbiased evaluation of SATdata strutures and algorithms. The JQUESTSAT framework is also expeted to serve asthe blueprint for the implementation of eÆientSAT algorithms in C/C++.Regarding the evaluation of SAT data stru-tures, the experimental results, indiate thatsome of the new data strutures proposed maybe preferable for the next generation SATsolvers. This onlusion results from these newdata strutures being in general faster, butmostly due to oping better with the lazinessof reent (lazy) data strutures.Related researh work involves evaluatinghow advaned SAT tehniques perform withlazy strutures. Clearly, this will depend on theauray of eah data struture to identify bi-nary/ternary lauses. As a result, data stru-3Observe that the utilization of two referenes onlyguarantees the identi�ation of unit lauses. The lak oforder among the two referenes prevents the identi�a-tion of binary and ternary lauses. In order to identifyall or some of the binary/ternary lauses, either the tworeferenes respet some order relation, or more refer-enes need to be used.314

www.manaraa.com

Table 2: Results for the auray of reorded lause identi�ationsatis�ed lauses binary lauses ternary lausesInstane AL HT WL wLS htLS AL wLS HT htLS AL wLS HT htLSat 175-81 291874 73% 80% 62% 89% 9978 10% 19% 93% 11166 3% 37% 86%200-82 148284026 96% 98% 85% 99% 438356 20% 29% 85% 613244 9% 14% 75%sw 100-13 424018 95% 96% 91% 98% 7185 36% 13% 91% 8616 2% 0% 85%100-79 259450 95% 96% 94% 98% 3062 26% 10% 79% 4780 5% 2% 73%ais 10 18519748 98% 98% 83% 99% 43337 31% 20% 75% 74899 10% 9% 68%bm barrel5 9005238 90% 95% 73% 99% 251321 1% 78% 98% 168820 1% 50% 92%longmult6 9892419 88% 93% 70% 95% 109446 8% 75% 96% 45805 9% 8% 77%queueinvar18 11318602 96% 97% 90% 98% 3927 8% 51% 90% 11486 1% 8% 74%e-isas85 5315 bug 24701766 90% 92% 86% 96% 628304 3% 65% 96% 539811 1% 50% 90%dimas hole9 14775953 84% 93% 53% 98% 22258 10% 17% 72% 62987 4% 1% 64%ii32e5 128713 99% 99% 99% 100% 1413 4% 14% 70% 1256 0% 4% 50%par16-4- 18326757 97% 99% 66% 100% 9454 19% 38% 95% 12131 7% 37% 90%isst96 4bloksb 15442183 92% 93% 81% 96% 191817 12% 48% 89% 196534 7% 16% 72%ibm bm-ibm-3 778745 82% 88% 73% 94% 136082 2% 89% 98% 31120 3% 18% 89%planning fats7hh.13 493070 89% 94% 86% 96% 16055 8% 62% 90% 14160 3% 52% 84%satplan-sat bw large. 32784773 89% 93% 65% 97% 275761 12% 36% 86% 284054 6% 24% 71%satplan-unsat bw large. 2713365 87% 90% 70% 96% 48475 14% 34% 91% 46996 7% 23% 82%sss-1.0 dlx2 aa 14905254 83% 89% 52% 93% 105184 20% 10% 89% 116638 5% 15% 58%dlx2 bug07 16664430 66% 85% 78% 91% 157500 16% 14% 86% 131612 6% 6% 66%sss-1.0a dlx2 bug17 6359386 95% 96% 86% 98% 44562 13% 10% 87% 49437 8% 2% 75%dlx2 bug59 586538 94% 93% 90% 95% 6450 13% 3% 74% 13002 5% 1% 55%sss-sat-1.0 dlx2 ...bug004 8587704 90% 93% 86% 97% 147713 11% 10% 92% 137653 7% 15% 84%dlx2 ...bug006 35417574 88% 93% 72% 97% 318105 12% 13% 93% 271931 6% 12% 81%us bf0432-079 200114 89% 92% 79% 98% 7423 4% 23% 90% 6702 2% 26% 91%ssa2670-141 57588 93% 92% 87% 96% 1595 11% 13% 88% 1646 3% 4% 90%tures that are unable to gather the informationrequired by advaned SAT tehniques may beinadequate for the next generation state-of-the-art SAT solvers.Referenes[1℄ L. Baptista and J. P. Marques-Silva. Using ran-domization and learning to solve hard real-worldinstanes of satis�ability. In Int. Conf. on Con-straint Programming, pages 489{494, September2000.[2℄ R. Bayardo Jr. and R. Shrag. Using CSP look-bak tehniques to solve real-world SAT instanes.In Pro. Nat. Conf. on Arti�ial Intelligene, pages203{208, 1997.[3℄ O. Coudert. On Solving Covering Problems. InPro. Design Automation Conf., pages 197{202,June 1996.[4℄ M. Davis, G. Logemann, and D. Loveland. A ma-hine program for theorem-proving. Communia-tions of the Assoiation for Computing Mahinery,5:394{397, July 1962.[5℄ M. Davis and H. Putnam. A omputing proedurefor quanti�ation theory. Journal of the Assoia-tion for Computing Mahinery, 7:201{215, 1960.[6℄ C. P. Gomes, B. Selman, and H. Kautz. Boost-ing ombinatorial searh through randomization.In Pro. Nat. Conf. on Arti�ial Intelligene, July1998.

[7℄ J.F. Groote and J.P. Warners. The propositionalformula heker heerhugo. In I. Gent, H. vanMaaren, and T. Walsh, editors, SAT 2000, pages261{281. IOS Press, 2000.[8℄ C. M. Li and Anbulagan. Look-ahead versus look-bak for satis�ability problems. In Pro. Int. Conf.on Priniples and Pratie of Constraint Program-ming, 1997.[9℄ I. Lyne, L. Baptista, and J. Marques-Silva.Stohasti systemati searh algorithms for satis-�ability. In LICS Workshop on Theory and Appli-ations of Satis�ability Testing, June 2001.[10℄ J. P. Marques-Silva. Algebrai simpli�ation teh-niques for propositional satis�ability. In Int.Conf. on Constraint Programming, pages 537{542,September 2000.[11℄ J. P. Marques-Silva and K. A. Sakallah. GRASP:A new searh algorithm for satis�ability. In Pro.Int. Conf. on Computer-Aided Design, pages 220{227, November 1996.[12℄ M. Moskewiz, C. Madigan, Y. Zhao, L. Zhang,and S. Malik. Engineering an eÆient SAT solver.In Pro. Design Automation Conf., 2001.[13℄ B. Selman and H. Kautz. Domain-independent ex-tensions to GSAT: Solving large strutured satis-�ability problems. In Pro. Int. Joint Conf. onArti�ial Intelligene, pages 290{295, 1993.[14℄ H. Zhang. SATO: An eÆient propositional prover.In Pro. Int. Conf. on Automated Dedution, pages272{275, July 1997.315

